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ABSTRACT

A novel image compression algorithm based on generalized prin-
cipal component analysis (GPCA) is proposed in this work. Each
image block is first classified into a subspace and is represented with
a linear combination of the basis vectors for the subspace. Therefore,
the encoded information consists of subspace indices, basis vectors
and transform coefficients. We adopt a vector quantization scheme
and a predictive partial matching scheme to encode subspace indices
and basis vectors, respectively. We also propose a rate-distortion op-
timized quantizer to encode transform coefficients efficiently. Simu-
lation results demonstrate that the proposed algorithm provides bet-
ter compression performance than JPEG, especially at low bitrates.

1. INTRODUCTION

Recently, generalized principal component analysis (GPCA) was pro-
posed in [1, 2], which clusters signals into subspaces based on linear
polynomial algebra. Also, a recursive and robust version of GPCA
was proposed in [3] to tolerate noises in data and handle outliers.
It provides a guiding criterion to choose an effective model among
all candidates. Note that these algorithms were originally devised to
solve vision problems, such as motion segmentation, and machine
learning problems.

In [4], Huang et al. showed that GPCA can be also used for
image compression. More specifically, they clustered image blocks
using GPCA and obtained the optimal set of basis vectors to repre-
sent the input image in a compact way. They compared GPCA with
other popular transforms for image compression. However, they did
not take into account additional bits to describe basis vectors. Fur-
thermore, their coding system was not complete and did not include
the quantizer and the entropy coder for transform coefficients.

In this work, we propose a complete image coding system based
on GPCA. In contrast to [4], all the required components, includ-
ing quantizer and entropy coder, are implemented and incorporated
into the coding system. Furthermore, to maximize image quality
subject to the constraint on bit budget, we propose a rate-distortion
(R-D) optimization scheme for the subspace clustering and the quan-
tization. In GPCA coding, basis vectors are adaptively chosen, and
thus they should be transmitted to the decoder as side information.
We employ vector quantization (VQ) and predictive partial matching
(PPM) to encode the side information efficiently.

This paper is organized as follows. Section 2 describes the pro-
posed algorithm. Section 3 presents simulation results. Finally, con-
cluding remarks are given in Section 4.

2. PROPOSED ALGORITHM

Fig. 1 shows the block diagram of the proposed image compression
system. Image blocks are first projected onto a lower dimensional
vector space and then clustered by GPCA. The side information for
GPCA is encoded using VQ and PPM, whereas transform coeffi-
cients are encoded by an adaptive arithmetic coder. Let us describe
each function block in more detail.

2.1. Subspace Clustering and Basis Vector Generation

An input image is first divided into a set of non-overlapping blocks
of size l × l. In this work, l is set to 8. Then, each block is regarded
as a column vector in R

l2 and is projected onto a lower dimensional
space R

K to reduce the computational complexity of the subsequent
procedures. K is a positive integer between 4 and l2/2. K can be
also changed to control the overall bitrate.

Those projected vectors are clustered into two subspaces recur-
sively, generating a balanced binary tree of height 2, as shown in
Fig. 2. Each node corresponds to a subspace. Specifically, the ith
node at depth d, Sd

i , is the subspace that is spanned by the basis vec-
tors of cluster i at recursion level d. In the recursion procedure, we
adopt the robust GPCA algorithm in [3] to cluster data, which does
not require any preliminary knowledge on the number of subspaces
and the dimension of each subspace.

For each subspace, which corresponds to an internal or leaf node
in the tree, we obtain basis vectors using the standard PCA tech-
nique. Then, each image block is encoded using the basis vectors
of the corresponding subspace. Therefore, we encode the subspace
index for each block as side information, as illustrated in Fig. 3. This
information is compressed using a PPM coder. Note that PPM was
originally proposed to compress binary facsimile images in a lossless
manner [5].

Let kd
i be the dimension of Sd

i . In other words, the basis for Sd
i

is composed of kd
i vectors. Therefore, each l × l block, which is

classified into the subspace, is represented as a linear combination
of the kd

i basis vectors. Since kd
i is typically much smaller than

l × l, a coding gain is achieved. In the example of Fig. 3, those two
blocks are represented as the combinations of three basis vectors,
respectively. In general, a block, classified into Sd

i , is approximated
by

xd
i =

kd
i∑

j=1

cjv
d
i,j , (1)

where vd
i,j is the jth basis vector for Sd

i and cj is the corresponding
weighting coefficient.
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Fig. 1. Block diagram of the proposed algorithm.
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Fig. 2. Recursive clustering of subspaces.
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Fig. 3. Each block is classified into a subspace and then is approx-
imated by a linear combination of the basis vectors for that space.
The number in a block denotes the subspace index.

2.2. VQ Encoding of Basis Vectors

In GPCA-based image coding, subspaces and their basis vectors are
adaptively obtained according to the characteristics of the input im-
age. Therefore, all the basis vectors should be encoded and transmit-
ted to the decoder. Fig. 4 illustrates the encoding of the “Barbara”
image. All its blocks are classified into one of the two subspaces.
The first subspace (i = 1) has 7 basis vectors, while the second sub-
space (i = 2) has 8 basis vectors. We encode those basis vectors
using a VQ scheme.

As shown in Fig. 4, the first basis vector for a subspace can be
well approximated by a DC component in most cases. Thus, it is
not encoded in this work. The other vectors are encoded using the
generalized Lloyd algorithm (GLA). We observed by experiments
that the first two vectors (j = 2 or 3) are relatively smooth, while
the remaining vectors contain high-frequency textures. Therefore,
we use two VQ codebooks: one for j = 2 and 3 and the other for
j = 4 to kd

i .
After VQ, the reconstructed basis vectors do not form an or-

thonormal set. Therefore, as a postprocessing, we apply the Gram-
Schmidt orthonormalization to the reconstructed vectors at both the
encoder and the decoder. Then, the orthonormal basis is used to

compute GPCA coefficients.

2.3. R-D Optimized Quantization of Coefficients

In this work, transform coefficients are uniformly quantized and the
quantization indices are encoded with an adaptive arithmetic coder.

Let Si denote a subspace and ki be its dimension. Thus, if a
block is classified into Si, it is transformed into ki coefficients. To
achieve the best R-D performance, we optimize the set of quantizer
step sizes Q = {Qj : j = 1, 2, . . . , ki}, where Qj denotes the
step size for the jth coefficient. More specifically, we attempt to
minimize the total distortion of the image blocks in Si

Di =

Ni∑

m=1

Dm(Q), (2)

subject to the bitrate constraint

Ni∑

m=1

Rm(Q) ≤ Ri, (3)

where Ni is the number of blocks in Si and Ri is the given bit budget
for the blocks in Si. Dm(Q) and Rm(Q) denote the distortion and
the amount of bits for the mth block, respectively, when Q is chosen
as the set of quantizer step sizes.

However, it requires too high computational complexity to solve
the above constrained minimization problem exactly. To reduce the
complexity, we obtain a suboptimal solution by refining the quan-
tizer step sizes iteratively. First, we set each quantizer step size to
the maximum value. Then, at each iteration, we update the step size
Qj for the jth coefficient to q, so that it maximizes the ratio

−∆Di

∆Ri
, (4)

where ∆Di denotes the amount of decrease in distortion, and ∆Ri

denotes the amount of increase in bitrate. The iteration stops, when
the target bitrate Ri is achieved. Intuitively speaking, we start from
the upper left corner point on the convex hull of the achievable R-D
region and attempt to move along the convex hull while increasing
the bitrate. Note that a similar approach was adopted in the R-D
optimization of JPEG in [6].

2.4. Pruning of Subspace Tree

In generating the set of subspaces in Fig. 2, the robust GPCA in
[3] attempts to minimize the effective dimension only, which is the
average number of scalar values to represent a block. The subspace
configuration, however, may not be optimal in the R-D sense.

In this work, we consider all configurations, which can be ob-
tained by pruning the full tree in Fig. 2. There are four possible con-
figurations

{
S1

1 , S1
2

}
,
{
S1

1 , S2
3 , S2

4

}
,
{
S2

1 , S2
2 , S1

2

}
and {S2

1 , S2
2 , S2

3 ,

S2
4} as shown in Fig. 5.
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Fig. 4. The image blocks in the “Barbara” image are classified into two subspaces. The first subspace has 7 basis vectors, while the second
subspace has 8 basis vectors. Note that the first subspace represents textures in one diagonal direction, whereas the second subspace represents
textures in the other direction.
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Fig. 5. Four possible configurations of subspace cluster-
ing: (a)

{
S1

1 , S1
2

}
, (b)

{
S1

1 , S2
3 , S2

4

}
, (c)

{
S2

1 , S2
2 , S1

2

}
and (d){

S2
1 , S2

2 , S2
3 , S2

4

}
.

We choose one of these configurations so that it provides the
best R-D performance. To avoid confusion from complex notations,
let

{Si : i = 1, 2, . . . , n} (5)

denote one of the configurations, where n is the number of subspaces
in the configuration. Suppose that Rtotal is a total bit budget for
the input image. Then, to each subspace Si, Ri is assigned by the
formula

Ri = Rtotal
Niki∑n
l=1 Nlkl

. (6)

In other words, the rate is set to be proportional to both the number
of blocks in the subspace, Ni, and the dimension of the subspace,
ki. Given Ri, we perform the R-D optimized quantization for each
subspace using the method in Section 2.3 and then compute the sum
of the distortions for all subspaces.

Finally, the subspace configuration is selected to minimize the
sum of the distortions.

Table 1. The amount of bits for encoding basis vectors.
(k1, k2, k3, k4) No Comp. VQ Compression

(Bytes) (Bytes) Ratio
(4,4,4,5) 8,120 65 124.9
(7,7,8,8) 1,552 130 104.2

(14,14,15,15) 22,960 270 85.0
(15,15,15,15) 23,520 280 84.0

3. SIMULATION RESULTS

Fig. 4 shows the segmentation result when GPCA is applied to the
“Barbara” image of size 512× 512. The block size is set to 8× 8. It
is observed that the textures in the basis vectors are consistent with
those of the image blocks in the subspace. For the first subspace, the
textures are dominated by the diagonal lines from upper left to lower
right. For the second subspace, the textures contain the diagonal
lines in the other direction.

For the VQ of the basis vectors, we use a training set of 189
images from the UCID database [7]. GPCA is applied to all images
and then the basis vectors are divided into two training sets: those
with j = 2 and 3 and those with j = 4 to ki. Using these sets, two
codebooks are generated to encode the basis vectors. Each code-
book contains 1,024 codewords and the code vector size is 8 × 2.
Therefore, a 8 × 8 basis vector is encoded with 4 codewords. Ta-
ble 1 summarizes the bitrates, which are necessary to encode basis
vectors. Before the compression, the basis vectors consume a signif-
icant portion of the overall bitrate. However, our VQ scheme effec-
tively compresses the basis vectors and provides a compression ratio
as high as 124.9. Therefore, after the compression, the additional
bitrate for the basis vectors becomes negligible.

Fig. 6 compares the compression performance of the proposed
algorithm with that of JPEG. Note that the proposed algorithm pro-
vides about 0.5 ∼ 1.0dB better PSNR performance than JPEG.
Fig. 7 shows the reconstructed “Barbara” images, which are encoded
at a bitrate of 0.143 bpp by JPEG and the proposed algorithm. It is
observed that JPEG blurs high-frequency textures and yields severe
blocking artifacts. On the other hand, the proposed algorithm pro-
vides a much more faithful image quality.
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Fig. 6. The compression performances of JPEG and the proposed
algorithm.

4. CONCLUSION

In this paper, we proposed an image compression algorithm based
on GPCA. Contrary to the previous work in [4], we implemented
all components for a complete compression system, including quan-
tizer and entropy coder. Subspace indices were encoded using a
PPM method and basis vectors were encoded with a VQ scheme.
Also, an R-D optimized quantizer was designed to improve coding
gain. Simulation results demonstrated that the proposed algorithm
yields better compression performance than JPEG, especially in low
bitrates. Currently, we are investigating more general subspace con-
figurations and their efficient pruning algorithm.
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Fig. 7. The reconstructed “Barbara” images at 0.143 bpp: (a) JPEG
and (b) the proposed algorithm.
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