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ABSTRACT

We consider the problem of constructing visually optimized
balanced multiple descriptions of images, instead of being op-
timized with the conventional measure of mean squared error
(MSE). The recently proposed Modified Multiple Description
Scalar Quantizer (MMDSQ) is used because its central and
side quantizers all have convex and uniform cells. Since the
majority of research results on the visual distortion caused
by quantization noise assumes convex and uniform quantizer
cells, they can be conveniently applied to the system based on
MMDSQ. The technique provides substantially higher side
reconstruction perceived quality when compared at the same
central reconstruction quality, which is verified through per-
ceptual tests.

1. INTRODUCTION

The multiple description (MD) problem considers encoding a
source into two descriptions, either of which can be used to
reconstruct the source, while the two descriptions can jointly
provide a better quality reconstruction. This coding approach
is useful in situations when two unreliable channels are present
between the transmitter and the receiver, as well as in packet
networks with loss (see [1] for an excellent review). From an
information theoretic point of view, we consider encoding a
source X into two descriptions with rate constraints R1 and
R2, respectively, and the reconstructions by using the individ-
ual description and both descriptions induce the side distor-
tions D1, D2, and the central distortion D0, respectively [2].
The most often considered case is when the descriptions are
balanced, where R1 = R2 = R and D1 = D2, which we
assume in this work. In this rate-distortion setup, the mean
squared error (MSE) is most commonly taken as the distortion
measure, especially when the source X is continuous [3].

Though Peak Signal to Noise Ratio (PSNR), which is in-
versely proportional to MSE, is widely used as a measure of
the reconstructed image quality in image coding literature, it
is indeed the quality of the image perceived by the human vi-
sual system (HVS), i.e., the visual quality, that matters in the
applications when the end users are human observers. PSNR
can be misleading: it was shown [4,5] that one (reconstructed)
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image can be ranked as better than another in terms of visual
quality, but ranked worse in terms of PSNR .

MD wavelet image coding has previously been addressed
in [6, 7], however with the goal of maximizing PSNR. In this
work, we consider constructing a visually optimized MD sys-
tem by incorporating existing results on HVS, particularly,
the Dynamic Contrast-Based Quantization (DCQ) algorithm
[5]. DCQ is selected over other algorithms such as the vi-
sual optimization tools in JPEG-2000 because it offers a sin-
gle solution for all rates. The visually optimized MD system
is practically implemented using the Modified Multiple De-
scription Scalar Quantizer (MMDSQ) [7]. MMDSQ is sim-
ple yet efficient, furthermore, it has one desirable feature that
the side quantizer and central quantizer all have convex and
uniform quantization cells, and it is under this condition the
psycho-visual tests are usually conducted [5, 8]; in contrast,
the previous design of the Multiple Description Scalar Quan-
tizers (MDSQ) [9] does not promise such convexity. We show
that the DCQ algorithm can be conveniently applied to an
MMDSQ-based system, and the resulting wavelet codec pro-
vides a significant visual quality improvement comparing to
the MSE-based system in [7]: the technique provides substan-
tially higher side reconstruction perceived quality when com-
pared at the same central reconstruction quality. This work
highlights the unique advantage of MMDSQ over previously
proposed quantization techniques in both its simplicity and
efficiency.

2. MMDSQ AND THE DCQ ALGORITHM

2.1. MMDSQ and its properties

When quantization is used to form multiple descriptions of a
source, the goal is to create two coarse side quantizers which
produce acceptable side distortions when used alone, while
combining them together can produce a finer central quan-
tizer, which provides lower distortion than the side quantiz-
ers. The side quantizers can be unconventional in the sense
that the quantization cells might not be convex. A general
design of MDSQ was pioneered by Vaishampayan [9].

Different from the framework proposed in [9], MMDSQ
has two stages: in the first stage, the two side quantizers are
two uniform quantizers with their bins staggered by half of
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the step size (Fig. 1), and the joint quantizer formed by the
two side quantizers has a half-sized quantization bin; in the
second stage, each bin in the joint quantizer is refined further
into a fixed number of smaller bins. The two descriptions are
formed as follows: the quantization indices from each side
quantizer are entropy-coded independently into the bitstream
of each description (base layer); then the indices from the sec-
ond stage are again entropy-coded, but split evenly between
each description (refinement layer). When the decoder re-
ceives only one description, it discards the refinement layer
information, and only decodes the base layer information in
this description; with both descriptions available, the decoder
can reconstruct to a better quality by using both the base layer
and the refinement layer information.

Side Quantizer 1

Side Quantizer 2
A bin in the joint

quantizer

Fig. 1. The structure of MMDSQ.

Surprisingly, this extremely simple structure offers very
competitive performance. Its asymptotic performance is the
same as MDSQ with a uniform central quantizer in terms of
MSE (see [7] for details). Furthermore, notice in Fig. 1 that
both side quantizers have convex and uniform central quan-
tizer cells; in contrast, the side quantizers in MDSQ [9] usu-
ally have non-convex side quantizer cells.

The MMDSQ framework offers two parameters to control
the overall quantization. One parameter is the first stage quan-
tization step size ∆, which determines the base layer rates;
the other is the number of finer quantization cells in each
joint quantizer cell. Denote this number as N , which implies
the central quantizer in fact is a uniform quantizer with step
size ∆

2N . When the individual description is constrained by
a given one-description rate R, the choice of the parameters
(∆, N) has only one degree of freedom, which in fact deter-
mines the tradeoff between the central and side distortions;
in other words, under a fixed rate constraint, a lower central
distortion necessitates a higher side distortion and vice versa.

2.2. The DCQ algorithm

Lossy image compression is widely used in practice (e.g. in
both JPEG and JPEG2000 standards) to achieve higher com-
pression ratio than lossless compression. An image codec
should also take into account the properties of HVS, such that
it can offer the most visually pleasing reconstruction given
a fixed bit rate budget. Particularly, different step sizes can
be strategically selected to quantize coefficients in wavelet
subbands to achieve this goal. The Dynamic Contrast-based
Quantization (DCQ) algorithm is one of such algorithms.

For the purpose of this work, it suffices to understand the
DCQ algorithm as follows. Let GV D be a control parameter

defined on the interval of (0, 1] that reflects the visual distor-
tion. Given a target GV D, DCQ computes a set of appropriate
step sizes [∆(0),∆(1), ...]′, where ∆(s) is used to uniformly
quantize subband s (see [5] for more details).

3. A VISUALLY OPTIMIZED MD IMAGE CODEC

In [7], an MD image codec using MMDSQ was proposed. It is
based on a wavelet bit-plane image coder, namely the Tarp fil-
ter image coder with classification for embedding (TCE) [10].
The TCE coder is simple, yet its performance is competitive
(comparable to JPEG2000). In this section, the DCQ algo-
rithm is further incorporated into the system in [7] to optimize
the visual quality, instead of minimizing the MSE.

To encode an image into a single description, the DCQ
algorithm provides a set of visually optimized quantization
step sizes ∆SD(s), s = 0, 1, ...,m − 1, where m is the num-
ber of subbands after performing DWT. It is clear that in an
MMDSQ-based system, there are two quality layers, i.e., the
base layer and the refinement layer. For the base layer, the
DCQ algorithm is again able to provide a set of visually opti-
mized quantization step sizes ∆b(s), s = 0, 1, ...,m − 1 for
the first stage side quantizers. For the refinement layer, a set
of values of N(s) can be used to approximate another set of
optimal quantization step sizes with a lower visual distortion
as ∆r(s) = ∆b(s)

2N(s) . Notice N(s) = 1 implies that there is
no refinement layer in subband s. Since N(s) can take only
integer values, a rounding approximation is in fact made on
the true optimal step sizes ∆′

r(s) such that ∆′
r(s) ≈ ∆r(s).

If bitplane image codecs, such as TCE [10], are used,
N(s) has to be in the form of 2n, where n is a non-negative in-
teger, and thus further approximations on the refinement layer
step sizes have to be made. More precisely, instead of approx-
imating the true step sizes ∆′

r(s) by an even integer fraction
of ∆b(s), we in fact approximate them by a dyadic fraction of
∆b(s). The visual quality degradation by using this approx-
imation is minor: a similar approximation is made when the
DCQ algorithm is applied to JPEG2000 in [5].

For higher visual distortion GV D (or a low bit budget), the
DCQ algorithm requires certain frequency subbands be dis-
carded altogether, which corresponds to a quantization step
size of ∆(s) = ∞. However, in the refinement layer, the
visual distortion is reduced, and some of these discarded sub-
bands will be quantized by a quantizer with a finite step size
and subsequently encoded. In this case, it is meaningless to
require that ∆r(s) = ∆b(s)

2N(s) still holds. Additional header
information can be used to signal such event.

It is also desirable if the encoder can offer precise rate-
control. In the proposed system, rate control can be per-
formed as follows. For the base layer, the rate control algo-
rithm in [5] can be used such that a reasonable range of GV D

value is chosen for the base layer. For the refinement layer,
the remaining bit budget can be used to encode the subbands
in an embedding manner, and encoder can choose to stop the
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encoding when the remaining bit budget is depleted. Denote
the step sizes corresponding to a visual distortion GV D as
∆GV D (s), and also define the indicator function

I(∆,∆′) =

⎧⎨
⎩

1 ∆ = ∞,∆′ < ∞;
1 ∆ < ∞, 2∆′ < ∆;
0 otherwise.

Note ∆(s) < ∞ means that the subband s will be quantized
rather than discarded. As GV D decreases, the step size of
quantization for each subband monotonically decreases. Thus
we have the following Algorithm 1.

Algorithm 1 Embeddedly encoding the refinement layer
Given:
∆r(s) = ∆b(s)/2, s = 0, 1, ...,m − 1: quantization step
sizes; GV D(0) = GV Db

: the base layer visual distortion
parameter; R′: the remaining bit budget per description;
n = 1.
while R′ > 0 do

Search for a GV D(n) < GV D(n − 1) such that∑
s I(∆r(s),∆GV D(n)(s)) = 1;

Let s′ = args [I(∆r(s),∆GV D(n)(s)) = 1];
if ∆r(s′) = ∞ then

∆r(s′) = ∆GV D(n)(s′);
else

∆r(s′) = ∆r(s′)/2.
end if
Encode the subband s′, with step size ∆r(s′); denote the
increment rate as ∆R;
Let R′ = R′ − ∆R/2; n = n + 1;

end while

Note that reducing the step size by a factor of two is equiv-
alent to encoding a lower bit plane. In searching for the ap-
propriate value of GV D(n), there is no need to perform the
actual entropy coding, thus it can be carried reasonably fast;
this step can be made even faster by adopting the model-based
rate-control approach in [5]. When the algorithm is termi-
nated with GV D(n), the resulting step sizes ∆’s are as if the
visual distortion parameter was specified as GV D(n) before
encoding, with the additional constraint that each step size has
to be a dyadic fraction of ∆b(s)/2.

4. RESULTS

A five-level wavelet decomposition is used with the Daube-
chies 9/7 filters, and all the subbands are uniformly quantized
by quantizers whose step sizes are determined by the DCQ
algorithm, as given in the last section. The test images are
resolution 512-by-512 gray-scale images.

A perceptual test was conducted in order to compare the
performance of the proposed system (denoted as MMDSQ-
TCE-VO) with that of the reference system [7], which is es-
sentially the same system but without the visual optimization
(denoted as MMDSQ-TCE). It is desirable to compare the vi-
sual qualities of the side (central) reconstructions when the

Table 1. Results of the perceptual test for eight test subjects,
each of whom were asked to compare 12 pairs of side recon-
struction images and 12 of central reconstructions.

two systems operate at the same central (side) visual qual-
ity. However, the visual quality is not readily quantified with
such accuracy, which makes this task difficult. To simplify the
overall perceptual test, the following approach is taken. Pre-
liminary experiments are used to determine operating points
for a given image at the same rate, where the central recon-
struction quality of MMDSQ-TCE-VO is slightly better than
that of MMDSQ-TCE; then the corresponding side recon-
structions for the two systems can be compared. In doing
this, the better visual quality of the central reconstruction of
MMDSQ-TCE-VO is in fact taken to be equal to that of the
reference system, and the main comparison is made on the
side reconstructions, thus in a sense we discriminate against
the proposed system.

Three typical test images were used, each compressed at
0.5 bpp/description and 0.25 bpp/description; at each rate,
two operating points were chosen, one with relatively high
redundancy between the two descriptions, the other one with
relatively low redundancy. This amounts to 12 comparisons
between the two systems. The side reconstruction image pairs
were shown to the test subjects, and the eight test subjects
were asked to select the better of the two images; the origi-
nal images were shown to the subjects before the test started.
To confirm that the central reconstruction images chosen by
the preliminary experiments are indeed discriminating against
the proposed system, they were also shown to the test sub-
jects, but with the ternary choices among “better”, “worse” or
“can not rank”. Overall, 24 pairs of images were included in
the test: 12 of them are for the central reconstructions, and
the other 12 are for the side reconstructions. With eight test
subjects, we have a total of 96 comparisons for the central
reconstructions, and the same number for the side reconstruc-
tions. Results of the test are summarized in Table 1, where the
results for different images and operating points are summed
up together instead of listed separately.

From Table 1, we can see that the proposed system is in
fact operating at a better central reconstruction quality than
the reference system, while at the same time its side recon-
struction quality is significantly better: the test subjects over-
whelmingly preferred the proposed system in the test on the
side reconstructions, without even once preferring the refer-
ence codec. Recall that our aim was to choose the operating
points such that the perceived quality of the central recon-
structions of the two systems are approximately the same, and
to compare the side reconstructions. The results imply that
the side reconstruction perceived quality of the proposed sys-
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(a) (b)

Fig. 2. Comparison of side reconstructions at 0.5 bpp/description, with approximately the same central perceived quality: (a)
without and (b) with visual optimization. These images are meant to be viewed from approximately 2-3 picture heights.

tem can be further improved, when the central reconstruction
is properly adjusted such that the two systems operate at the
exact same central reconstruction quality.

In conventional single description image coding, it is a
fact that visual optimization can provide a significant improve-
ment in terms of visual quality in the relatively low bit rate
region. In MD image coding, though the overall bit rate is
usually reasonably high (in the test at 0.5 bpp and 1.0 bpp
in total), the effective bit rate is actually lower, which is due
to the amount of redundancy introduced by the MD coding.
In this sense, visual optimization is more important in MD
image coding than in single description coding.

A set of comparison is given in Fig. 2. The two systems
are compared at approximately the same central reconstruc-
tion visual quality (MMDSQ-TCE-VO gives a slight better
visual quality). The difference is particularly visible in the
water ripple and crane edge area. More test images can be
found at http://foulard.ece.cornell.edu/tch/MDTCEVO.htm.

5. CONCLUSION

We considered the problem of constructing visually optimized
balanced multiple descriptions of images. By combining the
recently proposed MMDSQ and existing psycho-visual re-
sults, such a system is formed. Furthermore the embedded
feature of TCE make the rate-control of the proposed sys-
tem straightforward. Tests on natural images show a signifi-
cant improvement in terms of visual quality, comparing to its
counterpart without considering HVS properties.
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