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ABSTRACT

In this paper, we study non-linear frequency-warping functions
that are commonly used in speaker normalization. This study is
motivated by our recently proposed affine transformation model
for speaker normalization [1] which has provided improved recog-
nition performance when compared to uniform scaling model [1,
2]. In this work, using formant data from Peterson & Barney and
Hillenbrand vowel databases, we analyze the behavior of scale
factor as a function of frequency. The empirical observation [3,
4] shows that while uniform scaling assumption may be valid at
higher frequencies, there are significant deviations at low frequen-
cies. We show that while our recently proposed model has be-
havior similar to the empirical result, the behavior of many of the
commonly used non-linear models (including that of Eide-Gish,
power law and bilinear transformation) differ significantly from
the empirical result. This difference in behavior from the empiri-
cal observation may explain the limited improvement in recogni-
tion performance provided by these non-linear models when com-
pared to conventional uniform-scaling model. We also show that
our proposed model does better fitting to the formant data than
these non-linear models. We, therefore, conclude that the affine-
transformation model may be a more appropriate non-linear model
for speaker normalization.

1. INTRODUCTION

One of the major factors affecting the performance of speaker-
independent speech recognition is the variability in speech signal
arising due to the physiological differences of vocal tract of speak-
ers. Generally, as a first-order approximation, the vocal tract is
assumed to be a tube of uniform cross-section. For this model,
the formants of speakers would be frequency-scaled versions of
one and another, i.e. FR = αRSFS , where αRS is the ratio of
vocal-tract lengths of reference speaker R and subject speaker S.
However, there have been numerous studies that show significant
deviations from the uniform scaling assumption [5, 6].

Using actual speech data from Peterson & Barney (PnB) [7]
and Hillenbrand (HiL) [8] vowel databases, we have empirically
estimated the scale factor as a function of frequency in [3, 4]. It
is to be noted that if the uniform scaling assumption were indeed
true, the scale factor would be a constant independent of frequency.
However, the empirical result shows that the speaker-specific scale
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factor changes as a function of frequency, or equivalently that non-
linear frequency-warping is required for speaker normalization. In
this paper, we are interested in comparing this empirical result ob-
tained from actual speech data with the various non-linear mod-
els for speaker normalization that have been proposed in literature
[1, 9, 10, 11].

We show that the non-linear warping function based on our re-
cently proposed affine transformation method of [1] behaves simi-
larly to the empirical observation, whereas the frequency-warping
functions of [9, 10, 11] behave entirely different over all frequen-
cies from the empirical observation. Therefore, we argue that our
proposed non-linear model for speaker normalization is more ap-
propriate than previously proposed ad-hoc models. This may also
explain the limited success of these ad-hoc models in speaker nor-
malization when compared to uniform scaling [9, 12], while the
proposed model performs significantly better than uniform scaling
and also approaches the performance of mel-warp function [1].

The paper is organized as follows. In Section 2, we review
our empirically determined frequency-dependent scaling function,
of Umesh et al. [3] and analyze its behavior for PnB and HiL. We
briefly discuss the non-uniform normalization method of Bharath
et al. [1] using affine transformation in Section 3 and show the cor-
responding frequency-warping function. In Section 4, we compare
the non-linear frequency-warping functions based on our affine
model, Eide-Gish model, power-law model and the bilinear trans-
formation model with the empirical observation. We conclude
based on above experiments that our proposed non-linear model is
more appropriate for speaker normalization than these previously
proposed ad-hoc models.

2. FREQUENCY-DEPENDENT SCALING METHOD

In [3], we reviewed the uniform and non-uniform vowel normal-
ization methods of Nordström-Lindblom [13] and Fant [6] respec-
tively. We also presented a modified version of Fant’s non-uniform
normalization scheme for both adult and child speakers. The orig-
inal Fant’s idea of non-uniform normalization is given by

kj
n = kj

nM

(
k

ϕ

)
(1)

where n is the formant number and j is the vowel class. This is
in contrast to uniform scaling which only depends on the speaker-
specific constant, k (or equivalently on the constant scale factor α,
where α = (1+ k

100
)). The non-uniform scaling arises due to kj

nM

which is the reference scale factor between the average female and
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the average male for nth formant of jth vowel class. The database
dependent constant ϕ is the scale factor between the average male
and the reference speaker and is calculated to be −14.65 for PnB
and −12.18 for HiL databases respectively. The non-uniform nor-
malization scheme in (1) cannot be applied directly for speaker
normalization on automatic speech recognition systems since it re-
quires the knowledge of vowel category and formant number.

Umesh et al. [3] proposed the idea of frequency-dependent
scale factor as a solution to the above problem. The basic idea be-
hind this method is to model the weighting factor, knM as a func-
tion of frequency alone, thus making it both vowel and formant
independent. Note that all non-linear frequency-warping meth-
ods [9, 10, 11] also model the scale factor as a function of fre-
quency. The knM values are averaged over vowel category and
formant number and over small frequency intervals to obtain dis-
crete γ(fi) for each frequency interval. γ(f) is obtained by a cubic
spline fit to γ(fi) and is purely a function of frequency. The details
of the method can be found in [4]. Extending from (1), the non-
uniform normalization scheme using frequency-dependent scaling
function is given by

ρ(k, f) = γ(f)

(
k

ϕ

)
(2)

where ρ(k, f) is the speaker and frequency-dependent scaling func-
tion but is independent of vowel category and formant number.
The frequency-dependence comes from the weighting of γ(f) on
k. Hence, the normalization scheme in (2) can be used directly in
a speech recognizer unlike Fant’s method. Alternatively, because
of the way we have defined α in the experiments (which is differ-
ent from Fant’s notation where αfant = FS

FR
= α−1

RS
), we can

re-write (2) as

α̃f (f) =

(
1 +

ρ(k, f)

100

)−1

=

(
1 +

γ(f)(α − 1)

ϕ

)−1

(3)

Figure 1 shows the plot of γ(f) for PnB and HiL databases.
Although we will use γ(f) for most of the discussion, it might
be easier to understand the weighting function in Figure 1 if the
reader considers γ(f)

ϕ
. For both databases, γ(f) behaves simi-

larly for f ≥ 1600 Hz and tends to be constant at higher frequen-
cies. This agrees with the uniform scaling (i.e. constant scale fac-
tor) assumption made for higher formants. However, there seems
to be an anomaly in behavior between the two databases at low-
frequencies.1 This is particularly interesting since γ(f) for PnB
seems to suggest that scale factor weighting decreases at low fre-
quencies, while the more recent HiL database suggests exactly the
opposite.

In the subsequent sections we will compare this empirically
obtained γ(f) (seen above) and corresponding α̃f (f) with those
obtained from non-linear models proposed in literature.

3. AFFINE TRANSFORMATION METHOD

In [1], we have proposed a non-uniform speaker normalization
scheme using the following affine transformation model relating

1As [8] points out, despite the widespread use of the PnB measurements
there are several well recognized limitations to the database. For example,
there is no indication that subjects were screened for dialect or there is
information about the age and gender of child speakers in PnB. Hence, for
our experiments, it is important that we model the HiL data properly.
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Fig. 1. Frequency-dependent scale factors, γ(fi) and frequency-
dependent scaling function, γ(f) for (a) Peterson & Barney and
(b) Hillenbrand databases. It might be easier to understand the
weighting function if the reader considers γ(f)

ϕ
, where ϕ =

−14.65 for Peterson & Barney and ϕ = −12.18 for Hillenbrand
databases.

formant frequencies of the subject and the reference speakers as

(FR + A) = αRS (FS + A) (4)

where FR, FS are formant frequencies of the reference speaker,
R and the subject speaker, S respectively. The average female
speaker of the database is chosen to be the reference speaker. A

and αRS are assumed to be speaker-independent and speaker de-
pendent parameters respectively and are estimated from speech
data. The value of speaker-independent A has been estimated to be
508.04 for PnB database and 495.67 for HiL database. If we con-
sider the average male and average female as two speakers in the
database, then the corresponding αRS of the average male speaker
is computed as 1.14 and 1.12 for PnB and HiL databases respec-
tively.

One of the main motivations for choosing this model is that
the transformation (similar to Bark-scale) ν = log

(
1 + f

A

)
makes

the speaker-dependent scale factor to separate out as translation
factor in ν domain. This is interestingly similar to one approach
of speaker normalization which is based on applying different off-
sets (translations) in Bark scale for different speakers [14]. There-
fore, this model provides a unifying theory between the frequency-
warping and bark-scale-shift approaches to speaker normalization.
In general, the frequency-warping function for the affine transfor-
mation model using (4) is given as

fr = αsfs + A (αs − 1) (5)

and the corresponding frequency-scaling relation can be written as
α̃a(f) = αs + A(αs−1)

f
, where αs is the speaker-dependent scale

factor.

4. COMPARISON OF NON-UNIFORM SPEAKER
NORMALIZATION METHODS

In the following discussion we will formulate all non-uniform spea-
ker normalization schemes in the following framework,

fr = g(αs, fs) = α̃(fs)fs (6)
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Empirical α̃f (fs) =
(
1 + γ(fs)

100

)−1

Affine α̃a(fs) = 1.14 + 71.13f−1
s

PnB Eide-Gish α̃e(fs) = 1.2
3fs
8000

Power α̃p(fs) =
(

8000
fs

)0.11

Bilinear α̃b(fs) = 4000
πfs

tan−1 0.98 sin( πfs
4000

)
1.02 cos( πfs

4000
)−0.28

Empirical α̃f (fs) =
(
1 + γ(fs)

100

)−1

Affine α̃a(fs) = 1.12 + 59.48f−1
s

HiL Eide-Gish α̃e(fs) = 1.16
3fs
8000

Power α̃p(fs) =
(

8000
fs

)0.1

Bilinear α̃b(fs) = 4000
πfs

tan−1 0.98 sin( πfs
4000

)
1.02 cos( πfs

4000
)−0.25

Table 1. Frequency-dependent scale factor, α̃(fs) for various non-
uniform speaker normalization schemes with average male and av-
erage female to be the subject and reference speakers from Peter-
son & Barney (PnB) and Hillenbrand (HiL) databases.

where g(αs, fs) is the frequency-warping function and α̃(fs) is
the frequency-dependent scale factor of the subject with respect
to reference speaker. Both g(.) and α̃(.) depend on the speaker-
dependent term αs, though for the simplicity of notation, we do not
explicitly show αs as a parameter of α̃(.). Further, we will con-
sider the specific case of average male and average female speaker
and find the corresponding αs for each case.

For the empirically determined frequency-dependent scaling
function of (3), we have k = ϕ since we are considering the av-
erage male and female speakers. The corresponding frequency-
dependent scaling function is

α̃f (fs) =

(
1 +

γ(fs)

100

)−1

(7)

Similarly, using (5), α̃(fs) for affine transformation method is
given as

α̃a(fs) = αs +
A(αs − 1)

fs

(8)

For the case of average male and average female speakers, αs =
1.14 for PnB and αs = 1.12 for HiL.

Eide et al. [9] proposed the following parametric form for non-
uniform normalization, given as

fr = g(ks, fs) = k
3fs
8000
s fs (9)

⇒ α̃e(fs) = k
3fs
8000
s (10)

where ks is the subject’s scale factor and α̃e(fs) is the frequency-
dependent scale factor for Eide-Gish normalization. The motiva-
tion for the choice of this model is based on Fant’s observation
that for the first formant of some vowels like /IY/, it might be
better to use

√
ks as normalization factor. This observation seems

to be consistent with PnB data, but the behavior of HiL data is
quite different. Further, in the Eide-Gish model the frequency-
dependent scale factor is monotonic (does not saturate at high fre-
quencies as observed empirically) and has the value of

√
ks only

at f = 4000
3

Hz.
The bilinear transformation [10, 11] and power law are two

other commonly used non-linear models that are motivated by the

ε̃ Peterson & Barney Hillenbrand
Affine 437.58 297.49

Eide-Gish 572.77 566.10
Power 595.86 438.83

Bilinear 617.53 486.25

Table 2. Model-fitting error, ε̃ for various non-uniform speaker
normalization schemes with average male and average female to
be the subject and reference speakers from Peterson & Barney and
Hillenbrand databases.

fact that they can “reasonably” approximate piece-wise linear warp-
ing of uniform scaling. The frequency-dependent scaling function
for the power law, α̃p(fs) and the bilinear transformation, α̃b(fs)
are given as

α̃p(fs) =

(
fs

fN

)βs−1

(11)

α̃b(fs) =
fN

2πfs

tan−1
(1 − a2

s) sin
(

2πfs

fN

)

(1 + a2
s) cos

(
2πfs

fN

)
− 2as

(12)

respectively, where fN is the Nyquist frequency (assumed 8 KHz
in this paper). βs and as are the speaker-dependent parameters of
the models in (11) and (12) respectively. Also, |as| < 1. Sim-
ilar to the affine model, ks, βs and as are computed by fitting
fr = α̃(fs)fs using respective α̃(fs) from (10-12) to the data
points involving the formant frequencies of the average female and
average male speakers. We found that ks = 1.20, βs = 0.89,
as = 0.14 for PnB and ks = 1.16, βs = 0.9, as = 0.13 for HiL
databases.

Table 1 shows the frequency-dependent scaling function, α̃(fs)
for various non-uniform speaker normalization schemes using the
formant data of average male and average female from PnB and
HiL databases. Figure 2 and Figure 3 show the plot of α̃(fs) for
aforementioned normalization schemes based on Table 1 for PnB
and HiL databases. It is clear from Figure 2 and Figure 3 that the
empirical scaling function, α̃f (fs) derived from both PnB and HiL
databases tend to be constant at higher frequencies. In the case of
affine model, α̃a(fs) → αs, for fs � A and exhibits similar be-
havior w.r.t. empirical α̃f (fs) over fs ≥ 1600 Hz for both PnB
and HiL databases. The Eide-Gish model, power law and bilinear
transformation exhibit entirely different behavior from α̃f (fs) for
all fs.

While work on the use of other non-linear warping functions
have not reported any significant improvement in recognition, we
have obtained about 8% relative improvement when compared to
the linear-scaling model as reported in [1, 2]. The affine method
models the empirical data quite well as shown in Figure 2 and Fig-
ure 3 whereas Eide-Gish, power law and bilinear transformation
models, which are proposed in an ad-hoc manner, behave entirely
different from empirically computed scaling function. This may
also explain the limited success of these ad-hoc models in terms of
recognition performance when compared to uniform scaling.

We also made a study on the goodness of fit of fr = α̃(fs)fs

to the formant data of PnB and HiL using the appropriate scal-
ing functions mentioned in Table 1. Let ε̃ be the model-fitting
error involved while using α̃(fs) as the frequency-dependent scal-
ing function, which is defined as ε̃ = ‖fr − α̃(fs)fs‖2. Table 2
shows that the affine model fits the formant data better than other
proposed ad-hoc models for both the databases, as ε̃ is minimum
for affine model compared to other models. Hence, this experi-
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Fig. 2. Frequency-dependent scale factor, α̃(fs) for various non-
uniform speaker normalization schemes for Peterson & Barney
database. Note that except for affine-model all the other mod-
els behave quite differently from the empirical result. The affine
model has different behavior at low frequencies but matches the
empirical result at high frequencies.

ment again confirms that affine model is a better model for nor-
malization when compared to other ad-hoc normalization models.

5. DISCUSSION & CONCLUSION

We analyze empirically computed frequency-dependent weight-
ing function for Peterson & Barney (PnB) and Hillenbrand (HiL)
vowel databases, which shows that while uniform scaling assump-
tion might be true at high frequencies, there are significant devi-
ations at low frequencies. Further, the behavior of PnB and HiL
differ quite significantly at low frequencies. We compared our
earlier proposed affine model with the empirical scaling function
along with other ad-hoc non-linear normalization models of Eide-
Gish, power-law and bilinear transformation. Our experiments in-
dicate that affine model behaves similar to the empirical method
at higher frequencies, whereas other models behave entirely dif-
ferent at all frequencies. Further, for HiL data our model matches
the empirical result quite closely at all frequencies. In terms of
recognition performance, while the affine model provides 8% rel-
ative improvement over uniform scaling [1, 2], the other non-linear
models have not provided any significant improvement over uni-
form scaling model [9, 12]. Therefore, the affine model may be
a better model for speaker normalization than the other previously
proposed non-linear models.
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