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ABSTRACT
Analyzing syllable stress in spoken English has been an area of

research for a long time. In this paper, we analyze the perfor-

mance of a novel method for evaluating syllable stress in spoken
English. Specifically, we study the problem of determining if a

word is spoken with the correct syllable stress pattern. The pro-

posed method uses generalized models for stressed and unstressed

syllables to analyze the constituent syllables of a word and deter-
mines if the word is spoken correctly. The performance of the

proposed method is reported in terms of classification results on

human labeled word utterances and it is compared with that of the

word-dependent models using various classifiers.

1. INTRODUCTION

Lexical stress plays an important role in speaking and understand-
ing English language. The meaning of a word in English can com-

pletely change depending upon which of its constituent syllables

is stressed, e.g., ‘content’, ‘project’, ‘address’, etc. The part of

speech for a word can also depend upon the syllable stress of the
word. Therefore, it is very important to analyze syllable stress

in any English language learning application. Syllable stress is

also very important in the context of a text-to-speech synthesis sys-

tem to produce intelligible and natural sounding speech. A labeled
speech corpus is often required to train the prosody models of the

TTS system which are later used to predict the stress levels in a

test utterance. In this paper, we focus on the problem of identi-

fying incorrect lexical stress in English words spoken by Indian
speakers. Since many local languages in India, e.g., Hindi and

Bengali, don’t have word specific syllabic stress, Indian speakers

often mispronounce English words from syllable stress viewpoint.

We propose a method to determine if a word is correctly stressed
at the syllabic level using generalized models of stressed and un-

stressed syllables.

Several studies have been conducted in the literature to au-

tomatically identify stressed and unstressed syllables in a speech
utterance [1, 2, 3, 4, 5]. In English, polysyllabic words have one

syllable with primary lexical stress and rest of the syllables are

either unstressed or may have secondary stress. For simplicity,

secondary stressed syllables are often considered the same as the

unstressed syllables in these studies as well as in this paper. Most
of the studies on syllable stress use three basic acoustic features

for identifying stress, viz., fundamental frequency, energy and du-

ration. All the other features are generally derived from these three

basic features. The problem of identifying stressed syllable be-
comes difficult because the nature of variation of these parame-

ters across stressed and unstressed syllables is not uniform and

depends upon the syllable itself, the word containing the syllable

and the speaker. For example, a syllable containing short vowel

will not show large variations in duration when it is stressed as
compared to a syllable containing long vowel. Moreover, differ-

ent speakers use different prosodic features to stress a syllable. In

[1], the role of prosodic features, duration, amplitude and funda-

mental frequency is investigated in identifying stressed syllables
in spontaneous speech. It has been concluded that duration and

amplitude are more important in identifying stress as compared to

fundamental frequency. Accuracies of three different classifiers,

viz., neural networks, Markov chains and rule based classifier, to
classify stressed and unstressed syllables have been studied in [2].

A syllable stress classifier to study sentence level stress has been

described in [3]. Mel Frequency Cepstral Coefficients (MFCC)

have also been used in addition to the fundamental frequency and
amplitude as acoustic features in [3]. There also have been some

attempts to classify various stress conditions, such as, anger, clear,

fast, loud [6]. Most of these studies focus on classifying syllables

in a speech utterance into stressed and unstressed categories. Only
a few attempts have been made to classify a word into correct and

incorrect categories from syllable stress point of view [4]. We ad-

dress this latter issue in this paper and report the performance of

various classifiers.

Rest of the paper is organized as follows. Section 2 describes

the extraction of various acoustic feature from the recorded word

utterances. Word dependent models for syllable stress are dis-

cussed in Section 3. Section 4 describes the motivation and math-
ematical formulation of word independent models used in this pa-

per. The experiments performed to evaluate different approaches

and the corresponding results are described in Section 5. Section

6 draws some conclusions from the paper.

2. FEATURE EXTRACTION

The process of acoustic feature extraction and training of word de-
pendent/independent models is schematically shown in Fig. 1. For

each word, several utterances are recorded from different speakers.

The utterances are time aligned with the corresponding phonetic

spelling of the word using the acoustic models and the lexicon
dictionary of a speech recognition system. A phone-to-syllable

mapping for the word is then applied to get syllable level time

alignment of the utterance. Various acoustic features, as described

below, are then computed for each of the constituent syllables.

We have used eight acoustic features to build the stress models

which are shown in Table 1. Average fundamental frequency, av-

erage energy, and duration of the syllable are three main prosodic

features used in this paper. We normalize these three main features
with the corresponding values over the whole word utterance to

remove any speaker dependent variation. Fundamental frequency

and energy for a syllable were extracted every 10ms from a signal

frame of 25ms multiplied with a Hamming window. Fundamental
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Fig. 1. Feature extraction and training of models

frequency of a frame was estimated using a high resolution pitch

estimation algorithm described in [7]. Feature 4, i.e., average fil-

tered energy, is the average energy content in the higher frequency

band of the spectrum which is used to incorporate a study done
by Agaath et. al. in 1997 [8]. They concluded that the effect of

stress in the energy content of the speech signal is more prominent

in the higher band as compared to that in the lower band. Fea-

tures 5 and 6 are derived from the basic prosodic features. These
are obtained by multiplying average normalized energy and aver-

age normalized fundamental frequency of the syllable respectively

with the normalized duration of the syllable. Feature 7 is the ratio

of the average fundamental frequency of the next syllable to that
of the current syllable. It reflects the change in the average funda-

mental frequency of two consecutive syllables. Similarly feature

8 is the ratio of average energy of the next syllable to that of the

current syllable.

3. WORD DEPENDENT MODELS

Since the nature of lexical stress varies from one word to another,

word dependent models can be built to determine if the word is

spoken correctly from syllable stress viewpoint. In order to build a

word dependent syllable stress model, acoustic features, extracted
from all the constituent syllables of the word, are used to train the

model. Since features 7 and 8 do not exist for the last syllable, the

total number of features for a word is (8 ∗ N − 2) where N is the

number of syllables in the word. All the acoustic features are con-
catenated to form a combined feature vector which is then used to

train a particular classifier. We have built word dependent models

for many different words and used four different classifiers, viz.,
Naive Bayes, Decision Tree, k-NN and Support Vector Machine
(SVM), to classify correctly and incorrectly spoken words.

4. WORD INDEPENDENT MODEL

We observe that it is possible to design standard classifiers such as

decision tree or support vector machines to decide whether a word

is spoken correctly or not. However, these standard classifiers are

very specific to words. As a result, for each word we need one
separate classifier. In practice, it has two major problems. First,

with the increase in the number of words the number of required

classifiers increase and therefore the model is not scalable at all

for all practical purposes. Second, for a new word, it is always

Table 1. Syllabic level acoustic features

1. Average fundamental frequency (F̄0)

2. Average energy

3. Duration

4. Average filtered energy

5. Average energy * duration

6. F̄0*Duration

7. F̄0 ratio

8. Energy ratio

required to train a classifier from the very scratch. In other words,

we cannot use the previously trained classifiers for new words.
To circumvent these issues, we propose a novel technique mainly

based on the naive Bayes classification paradigm.

Let us consider the two classes be ω and ω̂ representing the

correct and incorrect classes such that if a word is spoken correctly

then it belongs to ω, and it belongs to ω̂ otherwise. In order that

a word is spoken correctly, each syllable of the word must follow
the correct stress pattern in the word.

In order to have a generalized model, let there be a k-syllable

word, x : x1x2 · · ·xk where xi denotes the ith syllable in the

word. Let S denote the subset of syllables supposed to be stressed

and US denote the subset of syllables to remain unstressed in x
such that S

T

US = φ and |US| = k − |S|. In that case we can
infer that the word is spoken correctly if and only if all syllables xi,

where i ∈ S, are stressed and all syllables xj , where j ∈ US, are

unstressed while speaking. Note that, in most of the English words

|S| = 1 since we are considering only two levels of stress, i.e.,
stressed and unstressed (secondary or tertiary stresses are treated

as unstressed).

Now, let us consider two general classes of stressed and un-

stressed syllables independent of the words and denote them by

Cs and Cus respectively. Note that, Cs and Cus are different from

S and US in the sense that S and US denote the subsets of sylla-
bles to be stressed and unstressed in a particular word, x. In our

formulation we establish a relation between the correct and incor-

rect word classes (ω and ω̂) and the general classes of stressed and

unstressed syllables (Cs and Cus). In order for a word to belong
to the correct class, ω, all syllables xi where i ∈ S, should occur

from the class Cs and for all syllables xj where j ∈ US, should

occur from the class Cus.

The posterior of a word belonging to the correct class can be

denoted by

P (ω|x) =
P (x|ω)P (ω)

P (x)
(1)

Assuming independence of stress pattern for syllables, P (ω|x) can

be written as

P (ω|x) =

Qk
i=1 P (xi|ω)
Qk

i=1 P (xi)
P (ω) (2)

In Equation 2, P (xi|ω) represents the conditional probabil-

ity that the syllable xi belongs to the correctly spoken word, i.e.,
the correctness of a word is governed by the correctness of each
of its constituent syllables independently. A syllable will belong

to correctly spoken word if the syllable is supposed to be stressed

and it is actually stressed while speaking and vice versa. This is

independent of other syllables and hence makes the independence
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assumption valid. Let us consider that the class conditional proba-

bility models are available for Cs and Cus. In that case,

P (xi|ω) =

j

P (xi|Cs) if i ∈ S
P (xi|Cus) if i ∈ US

(3)

Therefore, the posterior of a word spoken correctly can be ex-

pressed as

P (ω|x) =

Q

i∈S(P (xi|Cs)
Q

j∈US P (xj |Cus))
Qk

l=1 P (xl)
P (ω) (4)

Since we can express P (xi) = P (xi|Cs)+P (xi|Cus) (assuming

that there are only two classes of stressed and unstressed syllables

and no secondary or tertiary stressed syllables), the posterior can
further be expressed as

P (ω|x) =
Y

i∈S

»

P (xi|Cs)

P (xi|Cs) + P (xi|Cus)

–

Y

j∈US

»

P (xj |Cus)

P (xj|Cs) + P (xj|Cus)

–

P (ω) (5)

Let us denote

L(xi|Cs) =
P (xi|Cs)

P (xi|Cs) + P (xi|Cus)
(6)

and

L(xi|Cus) =
P (xi|Cus)

P (xi|Cs) + P (xi|Cus)
(7)

as the likelihood ratios of a syllable xi being generated from the
class Cs and Cus respectively. We, therefore, can write

P (ω|x) =

 

Y

i∈S

L(xi|Cs)
Y

j∈US

L(xj |Cus)

!

P (ω) (8)

Usually in naive Bayes formalism for two class classification

x ∈ ω if P (ω|x) ≥ 0.5
x ∈ ω̂ otherwise

(9)

However, since the size of the data is not very large, the a pri-
ori P (ω) can be a misleading one. Moreover, P (ω) is also word
dependent. We, therefore, make decision by considering

Y

i∈S

L(xi|Cs)
Y

j∈US

L(xj |Cus) ≥ θ (10)

where θ is a threshold which depends only on the number of syl-

lables in the word. For example, if x is a three syllable word

with second syllable to be stressed, then x is spoken correctly, if

L(x1|Cus)L(x2|Cs)L(x3|Cus) ≥ θ. This particular formulation
makes the classification scheme capable of handling any new word

provided the correct syllable stress pattern of the word is known.

We have used GMM and C4.5 decision tree to model the class of

stressed and unstressed syllables.

Table 2. Results for word dependent models. NB: Naive Bayes,
DT: Decision Tree (C4.5), KNN: K Nearest Neighbours (K=3),

SVM: Support Vector Machine

Classification Accuracy
(in percent)

Word NB DT(C4.5) KNN SVM

AVAILABLE 94.28 92.85 94.28 87.5

CAPABILITY 65.83 70.73 78.04 68.29

CONDITION 87.83 75.75 86.48 75.75

CONTINUOUS 73.58 66.03 81.13 71.69

DETERMINE 94.91 84.74 91.52 93.22

DEVELOPED 84.21 80.70 89.47 73.68

EXPENSIVE 95.08 94.91 95.08 88.13

GOVERNMENT 71.15 59.61 53.84 55.76

INDUSTRY 84.12 88.88 88.88 80.95

INFORMATION 72.22 72.13 70.83 75.40

OPPOSITE 94.91 91.07 91.52 89.28

PROBABLY 76.27 74.57 81.35 79.66

REMEMBER 96.87 96.87 96.87 93.75

SUFFICIENT 64.40 64.40 59.32 64.40

TRADITIONAL 96.55 91.37 96.55 94.82

average word 84.07 78.31 84.14 77.83

5. EXPERIMENTS AND RESULTS

The experimental database consists of 25 words recorded in iso-

lation by 53 speakers each at a sampling rate of 22 kHz in PCM
format, resulting in 1325 utterances. All of the utterances were

manually labeled by two human linguists, as correct or incorrect

by considering the syllable stress used by the speaker. For fea-

ture extraction all the utterances were phonetically aligned using
the acoustic models of an Indian English speech recognition en-

gine built at IBM India Research Lab, New Delhi. The acoustic

model is trained on more than 600 Indian speakers and can pro-

duce word accuracies of the order of 90% with speaker adaptation.
We checked manually about 50% of the aligned utterances and

corrections were made by hand.

Table 2 demonstrates the 10-fold cross-validation performance

of four different word dependent classifiers namely naive Bayes,
C4.5 decision tree, k-nearest neighbor and SVM. We used the im-

plementation of WEKA [9] in studying the performance of all the

classifiers. For k-NN classifier, we used k = 3 and for SVM, we

used the sequential minimal optimization (SMO) [10] of WEKA
with cubic polynomial kernel and C = 1 (C is the constant of

SVM). As input to the word-dependent models, we used all the

features of all the constituent syllables of a word to form a con-

catenated feature vector of dimension (8 ∗N − 2). N is the num-
ber of syllables in the word which varies from 3 to 5 for different

words in the training database.

For word-independent models, we used all the correctly spo-

ken word utterances to collect instances of stressed and unstressed
syllables across all the words. We assume that only the primary

syllable is stressed in these utterances and rest of the syllables are

unstressed. The word utterances which are labeled as incorrect

can not be used for training as we do not have the information re-
garding which syllable (if any) is stressed in these utterances. A

total of 2052 syllable utterances, containing 613 stressed and 1439

unstressed syllables, were used to train the GMMs and the C4.5

decision tree. In the case of GMM, each class is represented by a
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Table 3. Results for word independent models

Classification Accuracy
(in percent)

GMM Decision Tree

average syllable 82.23 92.16

Word

AVAILABLE 90.00 94.28

CAPABILITY 65.85 73.17

CONDITION 85.13 75.67

CONTINUOUS 77.35 81.13

DETERMINE 61.01 89.83

DEVELOPED 61.40 64.91

EXPENSIVE 86.88 95.08

GOVERNMENT 65.38 73.07

INDUSTRY 85.71 88.88

INFORMATION 69.44 75

OPPOSITE 83.05 74.57

PROBABLY 71.18 77.96

REMEMBER 60.93 96.87

SUFFICIENT 66.10 83.05

TRADITIONAL 74.13 93.10

average word 72.12 80.25

mixture of 4 Gaussian components and full co-variance matrices.

The trained decision tree consists of 51 nodes and 26 leaves. In
the case of decision tree, we compute L(xi|Cs) for a test syllable

xi as mp/(mp +np) where mp and np are the number of stressed

and unstressed syllables respectively assigned to p during training.

p is the leaf node to which the test syllable xi is assigned by the de-
cision tree. To make the correct/incorrect decision for a word, the

threshold θ was chosen as αN , where N is the number of syllables

in the word and α is a constant.

Table 3 demonstrates the results of word-independent models
with α = 0.5. We also varied α from 0 to 1 in steps of 0.05
in order to get the ROC curves as illustrated in Fig. 2. Average

classification rates for isolated stressed and unstressed syllables

are also shown in Table 3. We observe from Table 2 and Table 3
that the proposed word-independent model performs comparably

with the word-dependent models. Table 3 also reveals that decision

tree based word-independent model fares better than the GMM ap-

proach. This fact is also supported by the ROC curves as illustrated
in Fig. 2. Overall Fig. 2 shows that we can indeed obtain a good

region of operating characteristics using generic word-independent

models instead of word dependent models.

6. CONCLUSION

In this paper, we proposed a generic word-independent model by

establishing a relation between the class of stressed/unstressed syl-

lables and the correct/incorrect spoken word utterances. Unlike the

word dependent models, we can use the proposed word indepen-
dent model to evaluate new words without requiring any additional

training data. The experimental results show that the proposed

word independent model is comparable with the word dependent

models in terms of performance.
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