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ABSTRACT

In this study, we provide a theoretical approach for analyzing signal
and noise separation and the noise-robustness of class-dependent ac-
tivation areas in a model of the primary auditory cortex in the central
auditory system. Specifically, we interpret the auditory model as a
system of localized matched filters that act as a place-coding mech-
anism for mapping signal and noise spectra into separate regions in
the three-dimensional cortical space. This framework allows us to
analyze the noise robustness of signal-respondent neurons by com-
puting their signal-to-noise ratio(SNR)’s without having to explic-
itly consider the complex mathematical expressions for the auditory
model. The framework is also fundamentally consistent with the no-
tion of category-dependence proposed in our previous work. Our
theoretical developments of the place-coding effect and the separa-
tion of SNR will be also demonstrated experimentally.

1. INTRODUCTION

In previous studies, we experimentally established the relevance[1]
of a variant of a model of the primary auditory cortex(A1) in the cen-
tral auditory system[2], and were able to obtain improved recogni-
tion results under noisy conditions by introducing a phoneme categ-
ory-dependent feature selection method[3] based on conjecture on
the category-dependent place-coding of cognitive information. In
this study, we will propose an analytical approach for studying the
effects of noise on the cortical response by recognizing that the cor-
tical transformation acts as a system of localized matched filters
that map signal and noise spectra to different locations in the cor-
tical space. The localized nature of each matched filter allows the
transformation to place-code spectral components in a dimension-
expanded space where they can each be isolated and accessed in a
more explicit form. This is fundamentally different from the tradi-
tional cepstrum, which is a transformation that simply results in a
sinusoidal decomposition of the log power spectrum.

The matched filter perspective allows us to analyze the noise
robustness of cortical neurons by approximating the response areas
as functions of the signal spectral envelopes, without having to di-
rectly manipulate the complex mathematical equations that model
excitation and inhibition. Through this analysis, we can compute
the SNR of signal-respondent cortical neurons under simplified con-
ditions to show that the separation of spectral components allows
signal-respondent cortical neurons to be robust toward noise when
signal and noise are combined. These effects will also be demon-
strated experimentally using samples of speech phonemes.

Furthermore, the dependence of noise robust, signal-respondent
cortical locations on the structure of the frequency-domain power
spectrum implies that these regions will be signal category-dependent,

which is, at a conceptual level, consistent with our previous work on
category-dependent feature selection[3].

2. GENERAL FRAMEWORK

2.1. Best-match response areas and place-coding

Let p(y) denote the power spectrum of an uncorrupted signal defined
on the frequency domain y. The cortical response r (y;λ) represents
the amount of activation of a neuron that takes on a specific neural re-
sponse area[2]. Mathematically, the response is defined as the inner
product between p(y) and the response area function w(y;λ) para-
meterized by λ, which consists of best frequency(BF) x, scale s, and
symmetry φ. Since w (y;λ) is a local response area, we assume that
it is meaningful over some region R(λ) and is zero elsewhere. We
also assume that w(y;λ) satisfies the constraint:∫

R(λ)

w2 (y;λ)dy = k (1)

The cortical response is:

r (λ) =

∫
R(λ)

p (y)w (y;λ) dy (2)

Assume that we are interested in the function w(y;λ) that will pro-
vide the maximum squared (or absolute) response. By the Cauchy-
Schwarz Inequality, we have:

r2 (λ) ≤ k
∫
R(λ)

p2 (y) dy (3)

where the maximum will occur when:

w (y;λ) = c · p (y) (4)

in R(λ) where c is a constant designed to satisfy (1). Hence, it is
generally the response area that most closely matches the shape of
the spectrum (as in Fig. 3(a), (b), (d)), or its mirror (when c < 0
as in Fig. 3(c)) in a given local region that will result in the highest
response. This was also observed in the original development of the
model[2]. We can see that the cortical transformation acts like a
system of localized matched filters[4], where each response area is
designed to mimic the shape of a local spectral component.

While narrow response areas that model individual peaks give
high response in harmonics of the spectrum as in Fig. 3(a), it is often
response areas that match the broadband envelope of the spectrum
that yield the strongest output, as in Fig. 3(b) and (c). For instance,
assume that the power spectrum takes on the following form:

p (y) =
∑
k∆∈R

δ (y − k∆) v (y) (5)

where the summation is performed over the integer k and R is the
entire frequency range of interest. In a speech signal, ∆ models the

I ­ 12331­4244­0469­X/06/$20.00 ©2006 IEEE ICASSP 2006



pitch, while v(y) is the spectral envelope that can model broadband
energy distributions such as formants. We have:

r2 (λ) =
[ ∑
k∆∈R(λ)

v (k∆)w (k∆;λ)
]2

(6)

If∆ is small compared to R(λ), (1) also implies:∑
k∆∈R(λ)

w2 (k∆;λ) ≈ 1
∆

∫
R(λ)

w2 (y;λ)dy =
K

∆
(7)

By the summation form of the Cauchy-Schwarz Inequality, the max-
imum response will occur when w (k∆) is a constant multiple of
v (k∆) in R(λ). One response area function that satisfies this is:

w (y;λ) =

{
c · v (y)
0

y ∈ R (λ)
y /∈ R (λ) (8)

and we now have a response area that traces the spectral envelope.
The localized matched filtering also implies a place-coding mech-

anism in the cortical transformation. Consider the addition of some
wide sense stationary noise in the time-domain that results in a cor-
rupted spectrum written as follows:

p (y)′ = p (y) + d (y) (9)

Continuing our line of thought, when the input is noise alone, the
cortical transformation over the region R(λ) will be maximum for
the neuron, if any, that has a response area of this form:

w (y; θ) =

{
c · d (y)
0

y ∈ R (θ) = R (λ)
y /∈ R (θ) = R (λ) (10)

Now, assume the signal power spectrum takes on the impulse train
form in (5). For this signal, the best matching response area func-
tion is that given in (8). Hence, the signal and noise will each have
its own distinct maximally-respondent neuron. Neurons surrounding
the maximally-respondent ones will also have high responses since
their response areas are similar. In summary, as long as the signal
spectrum and noise spectrum are different, the signal and noise tend
to have different areas of activation in the cortical space. For exam-
ple, it can can be clearly observed in Fig. 2 ∼ 5 that the signal-
respondent components and the noise-respondent components are
mapped to distinct regions in the cortical space.

Note that the localized nature of the response area plays an im-
portant role in place-coding because it allows the response areas to
replicate parts of the spectrum in a divide-and-conquer-like manner
as in Fig. 3 and 5 without having to match the spectrum in its en-
tirety. Also note that the transformation in (2) is equivalent to the
Fourier transform if the response areas are sinusoids spanning R. If
p(y) is a log spectrum, this results in the cepstrum. However, from
the matched filter perspective, the cepstrum is fundamentally dif-
ferent in that it is merely a sinusoidal decomposition of the power
spectrum because the transformation functions are simple sinusoids
spanning the entire frequency range, not localized response areas de-
signed to collectively match the actual structure of the spectrum.

2.2. Noise-robustness

When signal and noise are combined, both the signal-respondent
neuron in (8) and the noise-respondent neuron in (10) carry both sig-
nal and noise components due to the additive nature of the cortical
transformation. We can show, however, that the signal-respondent
neuron is robust toward noise. By (2) and (9), the response to the
combination of signal and noise is :

r (λ)′ =

∫
R(λ)

p (y)w (y;λ) dy +

∫
R(λ)

d (y)w (y;λ) dy (11)

We define the SNR of the response as the ratio between the signal-
respondent neuron’s activation by the clean signal, and the distortion

inflicted on the same neuron by the addition of noise. Since in the
actual model the cortical response can be negative due to inhibitory
regions in w(y), we take the absolute value to represent response
power. The motivation behind this equation is that p(y) is already
a measure of signal power, and viewing the cortical response as a
weighted sum of the power spectrum, we want to preserve the units.

Sr,λ =
|r (λ)|∣∣r (λ)′ − r (λ)∣∣ =

∣∣∣∫
R(λ)
p (y)w (y;λ) dy

∣∣∣∣∣∣∫
R(λ)
d (y)w (y;λ) dy

∣∣∣ (12)

We can also define the SNR of the power spectrum in R(λ) before
cortical transformation.

Sp,λ =

∫
R(λ)
p (y)∫

R(λ)
|d (y)| (13)

In the auditory spectrum [5] used in our physiological model, d(y)
can be negative, which is why we include an absolute value sign.

Now, assume that the noise is stationary white noise with vari-
ance β over R, and p(y) is the Fourier power spectrum. This results
in d(y) = β. Assuming the harmonic model in (5), the SNR of the
noise-respondent neuron with response area defined in (10) is:

Sr,θ =

cβ
∑

k∆∈R(λ)

v (k∆)

c
∫
R(λ)
β2dy

=
1

βVλ

∑
k∆∈R(λ)

v (k∆) (14)

where Vλ denotes the volume (length in 1-d case) of the regionR(λ).
It is also easy to see that this is the SNR of the spectrum in (13):

Sr,θ = Sp,λ (15)

The SNR of the signal-respondent neuron with response area (8) is:

Sr,λ =

c
∑

k∆∈R(λ)

v2 (k∆)

cβ
∫
R(λ)
v (y) dy

≥
1
n

[ ∑
k∆∈R(λ)

v (k∆)

]2

β
∫
R(λ)
v (y) dy

(16)

where n denotes the number of harmonic impulses in R (λ) and we
have applied the summation form of the Cauchy-Schwarz Inequality
where equality holds when all v(k∆) are equal.

If the pitch∆ is small compared to R (λ),∫
R(λ)
v (y) dy ≈ ∆ ∑

k∆∈R(λ)

v (k∆) (17)

In addition, we know that n∆ ≈ Vλ. Hence,

Sr,λ ≥ 1

βVλ

∑
k∆∈R(λ)

v (k∆) = Sr,θ = Sp,λ (18)

Hence, we can see that the signal-respondent neuron has an SNR that
is greater than both the SNR of the noise-respondent neuron and the
average SNR of the input signal inR(λ). The same result can also be
achieved if we simply assume that the peaks contain enough energy
such that the envelope is a close approximation of the spectrum, i.e.,
p(y) ≈ v(y). The relation can break down if the response area does
not encompass a broad range of harmonic peaks as assumed in (17),
or, stated from a different perspective, if the envelope v(y) is too
different from the spectrum p(y) in R (λ).

To measure the collective effect of cortical transformations, we
can define the overall SNR of a set A = {λi} of cortical neurons,
and the overall SNR of the power spectrum as:

Sr (A) =

∑
λi∈A

|r (λi)|

∑
λi∈A

∣∣r (λi)′ − r (λi)∣∣
, Sp =

∫
R

p (y)
∫
R

|d (y)|
(19)
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Fig. 1. Ratio of squared SNR’s as a function of b

Note that Sp is simply Sp,λ with R(λ) = R, and in the case of
d(y) = β denotes the overall SNR of the time-domain signal. Now,
even if all neurons inA satisfied (18), this does not necessarily imply
Sr(A) ≥ Sp. However, since any lower bound on Sr,λ for all λ ∈ A
is a lower bound for Sr(A), there is a good chance of Sr(A) ≥ Sp
as long as A is carefully selected. This turns out to be demonstrable
in practice, as we will show in Section 3.

2.3. Modeling inhibition in the cortical response

The response areas in the actual cortical response are constrained to
have excitatory lobes flanked by inhibitory lobes of varying scale and
symmetry[1]. Therefore, (8) in the general framework can be modi-
fied to more reasonably approximate the signal-respondent response
areas by adding a bias term as follows:

w (y;Λ) =

{
c · {v (y)− b}

0
y ∈ R (Λ)
y /∈ R (Λ) (20)

where b > 0 and Λ is some {x, s, φ}. By subtracting a constant
from the spectrum, we divide it into a positive region and a nega-
tive region, which are effectively matched with the excitatory and
inhibitory regions of the response area. Intuitively, this makes sense
because the inhibitory regions and excitatory regions tend to cancel
each other, and in order to minimize this cancelation the largest spec-
tral components should match the excitatory regions and the smallest
spectral components should match the inhibitory regions as in Fig.
3(a), (b) and, (d), or vice versa as in 3(c).

To see how this affects our analysis of the SNR, we first assign
the following variables for notational simplicity.

s1 =
∫
R(Λ)

v (y) dy, s2 =
∫
R(Λ)

v2 (y) dy (21)

Again, by invoking the approximation in (17), we have:

Sr,Λ =
1

∆β

∣∣∣∣ s2 − bs1s1 − bVΛ

∣∣∣∣ , Sr,λ = 1

∆β

∣∣∣∣s2s1
∣∣∣∣ (22)

We can compare the two SNR’s by taking the squared ratio and writ-
ing it as a function of b as follows:

S2r,Λ
S2r,λ

=

{
s1 (bs1 − s2)
s2 (bVΛ − s1)

}2
=

{
α+

ρ

b− γ
}2

(23)

where

α =
s21
s2VΛ

, ρ =
s1
(
s21 − VΛs2

)
s2V

2
Λ

, γ =
s1
VΛ

(24)

By the integral form of the Cauchy-Schwarz relation, and ignoring
the equality case which would require the spectral envelope to be
constant, we have s2 > s21

/
VΛ. Hence, we know that 0 < α < 1

and ρ < 0, and also γ > 0. It is easy to visualize (23) as Fig. 1 and
recognize that Sr,Λ > Sr,λ as long as:

0 < b <
2s1s2

s21 + VΛs2
(25)

That is, the inhibitory parts can actually raise the SNR by allowing
the cancelation of noise. Note that when b = γ, the noise integrated
by the inhibitory part of the response area exactly cancels out the
noise integrated by the excitatory part of the response area, resulting
in an SNR approaching ∞ in the case of constant noise. Since γ
is effectively the local average of the spectrum, it is reasonable to
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Fig. 2. a(x, s) of a steady segment of an “aa” phone. Dark is high.
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Fig. 3. The auditory spectrum of a steady “aa” phone, and response
areas corresponding to components labeled in Fig. 2. Units for x,
s, and φ are Hz, cyc/oct, and degrees, respectively. The x-axis is
tonotopic frequency, and the y-axis has arbitrary units indicating the
magnitude of the response areas and the auditory spectrum.

assume that the b for the cortical response areas, as those shown in
Fig. 3, will roughly lie in the vicinity of γ due to their symmetry,
particularly when φ = ±π/2. However, since distortion in the corti-
cal response greatly differs from a constant, the change in SNR will
not follow the illustrated curve exactly.

3. EXPERIMENTS

As stated in [2], it is yet unclear how the response areas in the cor-
tical response should be normalized. If w (y;x, s, φ)′ denotes the
existing response areas used in the current auditory model[1], it is
easy to show that (1) will be satisfied if:

w (y;x, s, φ) =
1√
αs
w (y;x, s, φ)′ (26)

That is, the currently-existing response areas are essentially similar
to the normalized ones, only, there exists a bias that causes them to
favor low-bandwidth (high s) response areas more. However, for a
given scale s, which roughly translates to a fixed volume Vλ, the
cortical response will behave exactly the same as when using the
normalized response areas. Hence, we believe the matched filter
framework essentially remains valid for the current model.

The response a(x, s) is provided by the neuron with φ that gives
the highest response for a neighborhood of x roughly defined by s:

a (x, s) = max
φ
|r (x, s, φ)| (27)

Fig. 2 shows a(x, s) for a steady segment of the “aa” phone. The
areas with highest response constitute the signal-respondent cortical
neurons. As labeled in the diagram, we can see how the harmonic
(a), broadband energy (b), trough (c) (for which c < 0 in (20)), and
formant in (d) map to separate regions. Although phase information
is lost in the diagram, one can see in Fig. 3 that the signal-respondent
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Fig. 4. a(x, s) of the averaged distortion of the “aa” phone in Fig. 2
for input SNR 5 dB.
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Fig. 5. Response areas of key components in Fig. 4. Units are the
same as in Fig. 3. Most of the noise is mapped to cortical regions
that are separate from the signal-respondent regions in Fig. 2.

clumps of neurons also have different phases, which means that they
form separate clusters in the 3-d cortical space. Fig. 4 shows a(x, s)
of the distortion d(y) for the same “aa” phone segment. In order to
remove statistical variation, we computed the mean of the combined
spectrum in (9) over many instances of additive white Gaussian noise
in the time-domain, and then subtracted the signal spectrum p(y) to
obtain d(y). As shown in Fig. 5, d(y) is not constant and has some
dependency on the signal spectrum due to the noise suppression ac-
tion of the auditory spectrum[6]. We can clearly see how the noise
components map to areas different from the signal-respondent areas.
In particular, 4(a) does not overlap with 2(c) and 2(d) much because
they have different values of φ. Hence, the signal-respondent areas
are able to stay intact when signal and noise are combined. The
SNR of signal-respondent neurons is also demonstrated for the same
signal. We applied a threshold on r(λ) to obtain a set A of signal-
respondent neurons that include the major activation areas in Fig. 2.
In Fig. 6, we have indicated the overall SNR’s Sr(A) and Sp de-
fined in (19). To provide some sense of how the noise robustness
of signal-respondent areas changes for varying best frequencies, we
also plotted a localized SNR Sr(A(x)) where A (x) is the set of
signal-respondent neurons in A with BF x.

Finally, in Fig. 7 we computed SNR’s for 44 phoneme classes in
the TIMIT database for various input SNR under stationary Gaussian
white noise, using all samples from training data excluding “sa” sen-
tences. For each phoneme class, A in (19) was constructed by find-
ing the neurons with the top 4% absolute response, averaged over all
samples of the given class. U is the entire set of cortical neurons.
The mean of the ratios Sr(A)/Sp and Sr(A)/Sr(U), taken over all
phoneme segments, are plotted and compared to 1 to illustrate how
the signal-respondent neurons generally have higher SNR.

4. CONCLUSION AND FUTURE WORK

In this study, we have analyzed the dimension expansion of the cor-
tical transformation by approximating it as a system of localized
matched filters and showed how different spectral components can
match to different areas in the cortical space, allowing signal-respond-
ent areas to be robust toward noise. We have also showed that the
existence of inhibitory areas in the cortical response can sometimes
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Fig. 6. Sr(A(x)) (thick line), Sr(A) (solid horizontal line), and Sp
(dotted horizontal line). Sr(A(x)) does not exist for x > 3 kHz
because no signal-respondent response with best frequency in that
range exists.
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Fig. 7. Average Sr(A)/Sp and Sr(A)/Sr(U), marked by ◦ and ×,
respectively, with error bars showing standard deviation for varying
input SNR. For each input SNR, some horizontal spacing has been
added between the two ratios for added visibility.

act to further boost the SNR by allowing cancelation of distortion.
We demonstrated some of these effects by examples, and also veri-
fied in a preliminary experiment that the SNR of signal-respondent
regions is, on average, higher than the SNR of the auditory spectrum
for various samples of English phonemes.

Another important observation is that since the spectral distor-
tion d(y) in the auditory spectrum is dependent on the signal spec-
trum p(y), and each maps to different regions in the cortical space,
we can immediately conclude that noise-respondent cortical neu-
rons, as well as signal-respondent neurons, will be phoneme class(or
category)-dependent. In future work, combining category-dependent
noise robustness with the category-dependent cognitive features con-
sidered in [3] could lead to better feature selection methods and im-
proved architectures for hierarchical, category-dependent recogni-
tion and detection. We can also make better quantitative predictions
on the noise separation effect in the physiological model by model-
ing the distortion d(y) in the auditory spectrum more accurately.
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