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ABSTRACT

Non-uniform sampling of a signal is formulated as an opti-

mization problem which minimizes the reconstruction signal

error. Dynamic programming (DP) has been used to solve this

problem efficiently for a finite duration signal. Further, the

optimum samples are quantized to realize a speech coder. The

quantizer and the DP based optimum search for non-uniform

samples (DP-NUS) can be combined in a closed-loop manner,

which provides distinct advantage over the open-loop formu-

lation. The DP-NUS formulation provides a useful control

over the trade-off between bitrate and performance (recon-

struction error). It is shown that 5-10 dB SNR improvement

is possible using DP-NUS compared to extrema sampling ap-

proach. In addition, the close-loop DP-NUS gives a 4-5 dB

improvement in reconstruction error.

1. INTRODUCTION

Signal reconstruction from nonuniform samples (NUS) is a

widely studied problem. There have been many approaches

to signal reconstruction from non-uniform samples, namely,

from zero-crossings [1], from level crossings [2], signal re-

construction from periodically non-uniform samples [3], or

through iterative methods [4]. However, very few attempts

have been made [5] to analyze the quantization properties

of NUS and use them for signal compression. [6, 7] put

some light on the aspect on nonuniform sampling for cod-

ing of speech waveform. In [8] we have presented quanti-

zation properties of extrema samples (ES) for speech signal

reconstruction and speech coder based on this is proposed.

However, the resulting coder is a variable rate coder since the

number of ES (being nonuniform in nature) varies with time.

Also, the bitrate of the ES based coder is not easily scalable

in the sense that ES have been chosen as a fixed NUS and no

measure is incorporated to increase or decrease the number of

NUS.

The aim of this paper is to find optimum NUS to recon-

struct a finite duration signal which minimizes certain cost

function. The optimum NUS are obtained efficiently by dy-

namic programming (DP). It is found that for a particular

choice of interpolating function, the extrema are not necessar-

ily optimum NUS to minimize the reconstruction signal error.

The dynamic programming provides the advantage of choos-

ing the number of NUS to achieve a specific performance. We

also incorporate the quantization of NUS location and ampli-

tude while minimizing the cost function using DP approach

and we find that it improves reconstructed signal quality over

that obtained using DP and quantization separately.

2. ANALYSIS BY SYNTHESIS APPROACH FOR
OPTIMUM NONUNIFORM SAMPLES

Let x[n], 0 ≤ n ≤ N − 1 be the signal segment for resam-

pling and reconstruction. Let {ηi}M
i=1 be the NUS locations

of x[n]. The reconstructed signal x̂[n] is in general a function

of {ηi}M
i=1 and {x[ηi]}M

i=1, i.e.,

x̂[n] = F({ηk}, {x[ηk]}), k = i, i + 1, ..., i + ∆

i.e., a subset of (∆ + 1) NUS are used to reconstruct x[n].
Specifically, for ∆=1, we can write:

x̂[n] = x[ηi] + (x[ηi+1] − x[ηi])Fj

(
n − ηi

ηi+1 − ηi

)
,

ηi ≤ n < ηi+1 (1)

where Fj(X) is the local interpolation function. We consider

three local interpolation functions as in [8]:

Linear interpolation : F1(X) = X.

Polynomial interpolation : F2(X) = X2(3 − 2X).

Sinusoidal interpolation : F3(X) =
(

sin
πX

2

)2

.

The error in reconstruction is denoted by:

e[n] = x[n] − x̂[n]. (2)

We seek to minimize the energy of e[n] to obtain optimum

NUS. Thus we can pose the optimization problem to deter-

mine the optimum NUS as follows:

{
ηopt

i

}
= argmin

{ηi}

(
1
N

N−1∑
n=0

{x[n] − x̂[n]}2

)
1 ≤ i ≤ M (3)
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The above cost function to be minimized is in general not

a quadratic function of {ηi}, rather it is dependent on Fj . A

close form solution of (3) is not possible and hence, we resort

to the analysis by synthesis (AbS) approach, which is effi-

ciently solved using dynamic programming. Fig. 1 shows

a block diagram of finding the optimum NUS using this ap-

proach. To check the performance of DP in selection of NUS,

ηi}{

x [n]^

F  ( . )j

MSE

x [.]

x [n]

e [n]
Σ

+
−Interpolation

Fig. 1. AbS approach to optimum NUS selection.

we consider two synthetic signals - triangular and sinusoidal

shown in Fig. 2 and obtain optimum DP-NUS for different

choices of interpolation functions. It is clear that when the

local signal property matches the interpolation function, the

extrema are exactly identified and when there is no match,

there is deviation in NUS from extrema.
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Fig. 2. Optimum NUS for synthetic signals (a)-(b) optimum
NUS for triangular wave using F1 and F3 (c) optimum NUS
for sinusoidal signal using F3.

Though in [8] extrema have been used for good quality re-

construction of speech signals, we would like to explore other

NUS for coding. The new NUS is based on signal reconstruc-

tion criterion, rather than the original signal property. This

criterion can be controlled resulting in a coder of either fixed

bitrate or a particular performance. The solution of (3) using

DP is possible because of the local nature of the interpolation

functions. This permits to expand (3) as a trellis of succes-

sive cost with increasing number of NUS. We can stop the

trellis recursive search with a pre-fixed number of NUS and

back-track to find the optimum NUS positions.

Fig. 3 illustrates the difference between optimum DP-

NUS and extrema of a signal. The signal considered in Fig.

3 has 29 extrema, which are shown in Fig. 3 (d); Fig. 3 (c)

shows optimum DP-NUS obtained using interpolation func-

tion F2 where M=30. It can be observed that some NUS
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Fig. 3. (a)-(c) Optimum DP-NUS of a signal segment using
F2 as interpolation function for M=17, 23 and 30 respec-
tively, (d) 29 extrema of the same signal.

are placed where there is no extrema in the signal. However,

a closer look reveals that they are placed where the extrema

of the first derivative of the signal (i.e. zeros of the second

derivative) occur. Thus the turning points are selected by DP

to minimize the cost function. Fig. 3 (a) and (b) plot the op-

timum DP-NUS for M=17 and 23. It can be seen that the

optimum NUS for these cases are placed near the major turn-

ing points of the signal so that it preserves the basic structure

of the waveform.

Next, we consider a speech segment and choose the frame

length as 20 msec i.e. N=160. We obtain M(m) optimum

NUS for each frame where M(m) is set to the number of ex-

trema in mth frame. Fig. 4 (a) shows the segmental SNR

(Seg−SNR[m] =
PN−1

n=0 x2[n+mN ]
PN−1

n=0 {x[n+mN ]−x̂[n+mN ]}2 ) for both the

extrema based reconstruction and the reconstruction from DP

based NUS. Although the number of NUS is the same in both

cases, it clear that DP based NUS is always better and pro-

vides an improvement of about 5-10 dB. Fig. 4 (b) and (c)

show the average segmental SNR for various choice of M for

male and female speakers respectively for different interpo-

lation functions. The average segmental SNR shown in the

figure is computed by averaging over utterances of five differ-

ent speakers taken from TIMIT database. It is seen that the

interpolation functions F2 and F3 show almost similar per-

formance and both of them show a consistently higher SNR

over that of F1 for both the male and female speakers par-

ticularly at higher M . Thus we choose F2 for all subsequent

experiments of DP-NUS. Fig. 4 (d) compares the average seg-

mental SNR for male and female speaker for various choices

of M using F2 as interpolation function. It is seen that for any

choice of M the SNR of speech signal of a male speaker is
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Fig. 4. (a) Seg−SNR[m] for signal reconstruction using DP
based NUS and extrema based signal reconstruction, (b)-(c)
Average segmental SNR of male and female utterances for dif-
ferent interpolation functions, (d) for same number of NUS,
speech of male speaker gives a better reconstruction than that
of female speaker.

higher than that of a female speaker. This can be attributed

to the higher pitch frequency of the female speaker resulting

in more number of periods in the signal frame and hence it

requires more NUS to meet the same performance as that of

the male utterances.

3. DP BASED ABS APPROACH USING QUANTIZED
NUS

We are interested in quantizing the NUS location and ampli-

tude for the purpose of coding. Therefore, we need to quan-

tize both NUS location {ηi} and NUS amplitude (NUSA)

{x[ηi]}. Optimum quantizers Q2 and Q1 are designed for the

NUS location interval (NLI) (δηi
�
= ηi − ηi−1) and NUSA

based on their probability density functions (pdf). The pdfs

are generated from the NUS obtained from the ‘open loop’

formulation of section 2. These quantizers are incorporated

in the AbS loop as shown in Fig. 5. The reconstructed signal

amplitude x̂[n] is computed using {ηq
i } and {xq[ηi]}. We can

view Fig. 5 as a ‘closed-loop’ formulation similar to DPCM

wherein the quantization error is included into the NUS op-

timization which will lead to better performance in terms of

overall reconstruction error.
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Fig. 5. Block diagram of the ‘closed-loop’ formulation.

Since the pdf of NLI and NUSA differ as M is changed,

we consider three different quantizers for different values of

M=8, 22, 30. The number of levels for each quantizer is de-

cided based on the trade-off between the performance and

the bitrate. This approach is similar to the design of opti-

mum quantizer for the ES in [8]; 6 bits (i.e. 26=64 levels)

are used to code NUSA while 5 bits (i.e. 32 levels) are used

to code NLI information. To investigate the performance of

closed-loop DP+quantizer, we compare the average segmen-

tal Signal to Quantization Noise Ratio (SQNR) (see Table 1)

of the reconstructed signal, in both the open-loop and closed-

loop schemes of Fig. 5 and Fig. 1 respectively, while using

the same quantizers for both the schemes. For these experi-

ments, we fix F2 as the local interpolation function and av-

erage segmental SNR is computed by averaging over speech

utterances of five different speakers (male and female speak-

ers separately) taken from TIMIT database. From Table 1 we

Table 1. Comparison of the performance of joint
DP+quantization based NUS (closed-loop) and open-loop
DP followed by quantization.

Nonuniform Average Seg SQNR ( in dB )

Samples per Male Speaker Female Speaker

20 msec Open Closed Open Closed

(M) loop loop loop loop

8 0.83 3.05 0.79 2.81

22 8.15 13.05 7.28 12.22

30 14.10 17.96 12.16 15.34

see that for all three choices of M (bitrate increases with M ),

average segmental SQNR of the closed-loop configuration is

significantly better than the open-loop configuration.

It may be noted that for a fixed choice of M (fixed bitrate)

we achieve a certain performance in terms of average seg-

mental SNR. However, it is possible to obtain identical SNR

performance in each frame (i.e. constant Seg SQNR[m]) by

varying M in each frame, to meet the required SQNR; DP

based NUS formulation permits this, unlike many other com-

pression schemes. In this case the number of NUS in each

frame varies resulting in a variable bitrate coder.

From Fig. 6 we find that the optimum NUS for closed-

loop scheme are different from that of open-loop and also

the error in reconstructed signal is almost uncorrelated to the

original signal.

4. NUS BASED SPEECH CODER

To implement a speech coder based on NUS we note that

for frames belonging to unvoiced and silence regions in the

speech signal, reconstruction using NUS is unnecessary and

expensive in bitrate. Also, due to perceptual properties of

speech signal, such frames need not be reconstructed exactly.

Hence, we go for voiced-unvoiced-silence classification of
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Fig. 6. Performance of closed-loop DP based optimum NUS
with quantization for the same example in Fig. 3 (a)-(b) op-
timum NUS for open-loop and close-loop scheme (c) recon-
structed signal in closed-loop scheme (d) error signal.

the signal using zero-crossing and short-time energy of the

speech signal and use the NUS model only for voiced and

transition segments. Using half-frame voicing decision we

categorize each frame into one of the following: silence, un-

voiced (UU), voiced (VV) and mixture of voiced and un-

voiced (UV/VU); two bits are used to code the category in-

formation for each frame. When a frame is UU, the zero-

crossing rate (ZCR) in that frame is computed; based on the

observation that the fricatives with decreasing zero-crossing

rate are /sh/, /s/, /f/, /ch/, /z/, the fricative information and its

envelope is coded and such frames are synthesized based on

the fricative-ID and the envelope. For a frame detected as si-

lence, no parameter is coded. Frames belonging to VV and

(UV/VU) categories are coded using nonuniform samples ob-

tained from the solution of the AbS scheme of Fig. 5. This

coding scheme results in a variable bitrate speech coder.

To make a comparison with the ES based speech coder of

[8] we set M(m) for the DP search as the number of extrema

in each frame of the signal. We also use the quantizers of

extrema location interval (ELI) and extrema amplitude (EA)

designed in [8], for solving the optimum NUS. We choose

only VV and (UV/VU) frames to compute the average seg-

mental SQNR for the reconstructed signal using either coding

schemes. Table 2 compares the two coder performances in

terms of average segmental SQNR and also indicates the re-

spective bitrate for two male and two female sentences taken

from TIMIT database.

From Table 2 it is evident that the closed-loop DP-NUS

speech coder shows a significant improvement over ES based

coder, for utterances of both male and female speakers. Infor-

mal listening test of the generated speech samples also sup-

ports this performances.

Table 2. Comparison of the performance of ES based coder
and closed-loop DP-NUS based coder

Sentences Average Seg SQNR ( in dB ) Bitrate

ES based DP based (in kbps)

Sen 1 (male) 8.71 13.51 14.3

Sen 2 (male) 9.06 13.73 15.1

Sen 3 (female) 8.93 12.97 16.8

Sen 4 (female) 8.45 13.21 16.2

5. CONCLUSION

Our goal of finding optimum NUS for a given a speech sig-

nal, is not perfect reconstruction; rather, the emphasis is to

obtain optimum samples to achieve best performance in quan-

tization and coding of the signal. Accordingly, we have for-

mulated DP based AbS approach in which the energy of the

reconstruction error signal is chosen as the cost function to

be minimized. We also show that a closed-loop DP which

includes quantization into the optimization, results in signif-

icant performance advantage. One major advantage of us-

ing DP based AbS approach is that we can easily control the

trade-off between bitrate and performance of the NUS based

speech coder.
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