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ABSTRACT
In this contribution, we propose an entirely novel family of flexi-

ble score functions for blind source separation (BSS), based on the

generalized Gamma family of densities. An efficient maximum like-

lihood (ML) technique for estimating the parameters of such score

functions in an adaptive BSS setup, is also put forward. Simulations

indicate that the proposed density model can approximate speech

signals more accurately than conventional distributions, which leads

to an increase in separation performance and convergence speed.

1. INTRODUCTION

BSS aims to recover a set of unknown signals, the so-called sources

from their observed mixtures, based entirely on very little to almost

no prior knowledge about the source characteristics or the mixing

structure. In its simplest form, the model assumes that the mixtures

x(t)= [x1(t), . . , xm(t)]T∈ R
m are in fact linear and instantaneous

combinations of the original source signals s(t)=[s1(t), . . , sn(t)]T

∈ R
n at each time instant, such that:

x(t) = As(t) (1)

where A ∈ R
m×n denotes the non-singular mixing matrix. In many

aspects, BSS is an equivalent process to independent component

analysis (ICA), which by definition searches for a linear transfor-

mation W that can effectively minimize the statistical dependence

between its components [1]. In this context, the recovered source

signal estimates in vector form, can be written as:

u(t) = W x(t) (2)

Since it first appeared, the entropy maximization algorithm or In-

fomax [2], fairly quickly catalyzed a significant surge of interest in

using information theory to perform ICA. An efficient way of updat-

ing the separation matrix W with respect to its entropy gradient, is

the natural gradient algorithm (NGA) [3], which itself is an optimal

rescaling of the standard (stochastic) gradient of [2], and is given by:

Wk+1 = Wk + λ
�
I − ϕ(u)uT �

Wk (3)

where λ denotes the step-size (or learning rate), I is the identity

matrix, while vector ϕ(u) = [ϕ1(u1), . . . , ϕn(un)]T represents the

nonlinear monotonic activation (or score) functions, described as:

ϕi(ui) = −∂ log pui(ui)

∂ui
= −

∂pui
(ui)

∂ui

pui(ui)
(4)
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Higher-order statistics in (3), are implicitly introduced by choosing

suitable nonlinear score functions from (4). In theory, these should

be capable of doing an adequate job when modeling the probability

density functions (PDFs) of the unknown sources at hand.

2. FLEXIBLE INDEPENDENT COMPONENT ANALYSIS

By design, density matching BSS methods such as Infomax, are pre-

dominantly relying on explicit knowledge regarding source signal

priors. However, in practical cases when sources exhibiting dif-

ferent densities are mixed together, their capability to distinguish

and switch accordingly amongst these, can be significantly com-

promised. In addition, the separation performance and convergence

properties of (3), depend closely on the nature of the nonlinear func-

tion ϕi(ui) used to approximate — or to be more precise used to

hypothesize upon — the density function of the unknown source

signals. Despite the fact that, in some cases, a certain flexibility

can be afforded, an ill matched score function can result in a severe

model mismatch or a non-converging solution.

Recent contributions have provided some interesting solutions

on possible ways to instill source flexibility into BSS schemes (e.g.,

see [4, 5] and [6]). In this paper, we implement a novel and practi-

cally flexible BSS approach, specifically tailored to speech signals.

First, we stipulate that the generalized Gamma density (GΓD) model

can parameterize the PDFs of the speech sources well. Enough solid

evidence supporting such claim, have been documented in [7, 8] and

more recently in [9, 10]. Second, we derive an entirely new family

of parametric and flexible activation functions, based entirely on the

GΓD parent model. It is further shown that commonly used score

functions for BSS, are in fact special cases of this new parametric

family. Third, potential computational shortcomings when estimat-

ing the parameters of the aforementioned activation function, are

tackled with an extended ML statistical inference approach, which

is based on unconstrained multidimensional optimization [11]. Nu-

merical simulations when an adaptive version of the proposed GΓD-

based activation function is used in the NGA update, demonstrate

a substantial increase in separation performance and convergence

speed, when compared against other more conventional approaches.

3. GENERALIZED GAMMA DENSITY FUNCTION

Traditionally, in the field of signal processing, much work has been

focusing on defining accurate mathematical models to characterize

the amplitude distribution of a wide class of non-stationary stochas-
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tic processes, such as speech (e.g., see [7, 8] and [9, 10, 12]). To-

wards this direction, a large number of well-known parametric prob-

ability density function models, are currently available in the sta-

tistical literature. By employing three parameters, the generalized

Gamma density (GΓD) model is far more flexible than either the

standard Gamma distribution or the so-called generalized Gaussian

density (GGD) function [12]. For any zero-mean (µ = 0) signal

x ∈ R, the two-sided GΓD model, as proposed in [13], is equal to:

px(x|a, β, γ) =
γβ−aγ

2Γ (a)
|x|aγ−1 exp

�
−
� |x|

β

�γ �
(5)

valid for all non-negative values of x. Note that the positive real-

valued parameters a > 0, γ > 0 and β > 0, collectively define the

shape and the scale of the density function, respectively, while also

in (5), Γ(·) denotes the complete Gamma function, which in turn is

given by:

Γ(z) =

� ∞

0

xz−1e−xdx, z > 0 (6)

Special cases of the GΓD include well-known two parameter distri-

butions, namely the GGD (aγ = 1) and the Gamma density (γ = 1),

as well as standard single parameter distributions, for example the

Laplacian density (a = 1, γ = 1) and the Gaussian (or normal)

distribution (a = 0.5, γ = 2).

4. NOVEL FLEXIBLE SCORE FUNCTIONS

In an effort to meet the need of accurately approximating the PDFs

of unknown speech sources in the context of BSS, we propose an

entirely novel family of parametric (or flexible) activation functions.

After substituting (5) into (4) for the source signal estimates, the

derived score function can be seen to inherit a nice generalized para-

metric structure, which in turn can be attributed to the highly flexible

GΓD parent model. In such case, after some simple calculus, the

proposed score function1 can be written as:

ϕ(ui|a, β, γ) =
sign(ui)

|ui|
�

γ

βγ
|ui|γ − aγ + 1

�
(7)

which is valid for all ui > 0. In principle, ϕ(ui|a, β, γ) is able

to sufficiently model a large number of speech signals, as well as

several other types of heavy- and light-tailed distributions, since its

characterization depends explicitly on all three parameters, a, β and

γ. Hence, commonly used parametric and flexible activation func-

tions can be obtained simply by substituting appropriate values for

parameters a, β and γ in (7). For instance, a scaled form of the GGD-

based score function (see [4, 6] for its normalized form), constitutes

such a special case of (7), when aγ = 1 and β = 1:

ϕ(ui|γ) = γ sign(ui) |ui|γ−1
(8)

which is valid for all γ ≥ 1, while another special case is the very

popular ϕ(ui) = sign(ui) suitable for sources exhibiting a Lapla-

cian PDF. The proposed family of the GΓD-based parametric score

functions are depicted in Fig. 1, where they are plotted for different

values of the shape parameters a and γ. Note that in some special

cases, essentially those corresponding to heavy-tailed (or sparse) dis-

tributions, function ϕ(ui|a, β, γ) could become singular for ui = 0.

1Note that throughout the derivation of function ϕ(ui|a, β, γ), which
is here omitted due to lack of space, we have also used the transformation
sign(ui) = ui/|ui|, for ui �= 0.
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Fig. 1. GΓD-based flexible score functions arising from (7), when plotted for
different values of the shape parameters a and γ. Solid lines indicate single
parameter functions and dashed lines, two parameter distributions. Note that
in all cases, β = 1.

In practice, to circumvent such problem, the denominator of (7) can

be modified slightly to read:

ϕ(ui|a, β, γ) =
sign(ui)

[|ui| + ε]

�
γ

βγ
|ui|γ − aγ + 1

�
(9)

where ε is a very small positive parameter (typically around 10−4)

which, when put to use, can almost always guarantee that the singu-

larity of (7) for values around ui = 0, is avoided.

5. GENERALIZED GAMMA PDF PARAMETER
ESTIMATION

Historically, the development of inference procedures for the GΓD

has been a fairly complicated task [10, 14]. Moment matching esti-

mators (MMEs) and maximum likelihood estimators (MLEs), are

standard tools for statistical inference. MMEs are simple to de-

duce, yet these are often susceptible to large estimation errors, whilst

MLEs are more efficient, but less convenient to derive and calculate

from the data. The inference technique we present here, is a hybrid

of the aforementioned approaches. First, we use MME to calculate

an initial guess of the shape parameters, which is then refined further

by resorting to the MLE. The qth-order absolute central moment of

the generalized Gamma density function can be defined as:

E [|X|q] =

� +∞

−∞
|x|q px(x|a, β, γ)dx (10)

where E[ · ] represents the expectation operator. Substituting (5) into

(10), it is possible to show that the qth-order central moment trans-

form of the two-sided GΓD model is equal to:

mq = E [|X|q] = βq

�
Γ(a + q/γ)

Γ(a)

�
, ∀ q ≥ 0 (11)
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Adopting the notation above, we may further define moment ratios

as follows:

M1(a, γ) =
m2

m2
1

=
Γ(a + 2/γ) Γ(a)

Γ2(a + 1/γ)
(12)

M2(a, γ) =
m4

m2
2

=
Γ(a + 4/γ) Γ(a)

Γ2(a + 2/γ)
(13)

where the scale parameter β originally present in (11), is being ef-

fectively eliminated in both (12) and (13). Based on matching the

moments of the data with those of the GΓD, the simultaneous so-

lution of (12) and (13) yields the initial moment estimates for the

shape parameters â and γ̂. At this stage the scale parameter is set

to β̂ = 1. To refine those further, we resort to ML. In general, for

a sequence of mutually independent data x = (x1, x2, . . . , xN ) of

sample size N with density pxi(xi|a, β, γ), the ML estimates are

uniquely defined by their log-likelihood function [10, 15]:

L(x|a, β, γ) = log

N�
i=1

pxi(xi|a, β, γ) (14)

= N log
γβ−aγ

2Γ (a)
− 1

βγ

N�
i=1

|xi|γ+(aγ − 1)

N�
i=1

log|xi|

(15)

Normally, ML estimates are obtained by first differentiating the log-

likelihood function in (15) with respect to the GΓD parameters a, β
and γ and by then equating those derivatives to zero (e.g., see [10]).

Nonetheless, the numerical calculations involved with such an ap-

proach are often prohibitive. Instead, here we choose to minimize

the ML equation in (15) by exploiting the Nelder-Mead (NM) opti-

mization method [11]. The NM simplex optimization technique, is

an enormously popular direct search method for multidimensional

unconstrained nonlinear minimization. Its huge appeal in this case,

lies in the fact that it can minimize the scalar-valued ML objective

function in (15) using function values only, essentially without the

need to resort to any derivative information (explicit or implicit).

Minimizing with the NM technique to produce the refined ML shape

estimates â and γ̂, is computationally efficient. Following this, an

estimate for the scale GΓD parameter β̂ can be also calculated as

shown in [15]:

β̂ = m1
Γ(â)

Γ(â + 1/γ̂)
(16)

whereby it is stipulated that the shape parameters â and γ̂ are known.

6. EXPERIMENTAL RESULTS

First, the proposed inference technique is gauged for a relatively

small number of samples (N = 1000). For such a sample size, we

generate 100 different zero-mean and unit-variance i.i.d. sequences,

each for data selected from the most commonly used distributions,

often chosen to model speech, namely Gaussian, Laplacian and also

Gamma densities, which here we attempt to fully characterize by

employing the GΓD model. Table 1 shows the mean calculated for

the shape parameters a and γ and the scale parameter β, for every

density, after averaging over the same 100 Monte Carlo runs. As

evidenced from the results, the proposed extended maximum likeli-

hood inference technique performs exceptionally well. Having es-

tablished an accurate method for estimating the parameters of the

GΓD model, emphasis is now shifted to BSS. In particular, focusing

entirely on speech signals, we aim to show that by directly estimating

the PDFs of the sources at hand, through an adaptive tuning of the

Distribution a γ β

Gaussian 0.501 2.032 1.156

Laplacian 1.018 1.002 1.001

Gamma 0.503 1.004 1.087

Table 1. GΓD shape (a, γ) and scale (β) parameter estimates for some typi-
cal densities, based on the inferential procedure outlined in Section 5. Sample
size is N =1000. Results are averaged 100 independent Monte Carlo runs.

GΓD-based parametric activation function, will almost always lead

to significant increase in separation performance. The source ma-

terial used in these numerical simulations, is taken from the TIMIT

speech corpus [16] and it consists of two pairs of male and female

2s speech signals, sampled at 8 kHz.

In order to adequately capture the highly non-stationary char-

acteristics of the speech sources, we resort to a block-based batch

implementation of the NGA update shown in (3). The mixing ma-

trix A is chosen to be random and fixed, while the update is car-

ried out using short-time blocks of around 150 ms (1200 samples).

Three different approaches, with three different activation functions

are studied. In all cases, the learning rate parameter λ is tuned for

maximum performance, while all algorithms are initialized accord-

ing to W (0) = 0.1I . First, the speech mixtures are passed through

the so-called extended Infomax approach, which uses a simple fixed

(switching) nonlinearity as described in [5]. Next, the GGD-based

score function suggested in [4] and shown here in (8), is put to use.

In this case, the score function is adapted using (previous) estimates

of the source data. Note that here the adaptation of the exponent pa-

rameter for each of the two signals, can be carried out by resorting to

one of the moment matching estimators analyzed extensively in [12].

Finally, the NGA update is coupled with the newly proposed GΓD-

based activation function given by (9). This is also implemented in

a continuously adaptive fashion. However, here the shape and scale

parameters of the GΓD are estimated in a near closed-form manner,

as outlined in Section 5. The performance of the algorithms during

adaptation, is monitored using the cross-talk error metric, as sug-

gested in [3]:

ρ =

n�
i=1

�
�

n�
j=1

|pij |2
max

1≤�≤n
|pi� |2

− 1

�
�+

n�
j=1

�
�

n�
i=1

|pij |
max

1≤�≤n
|p�j | − 1

�
�

(17)

which is valid for all i �= j. Note that here, pij define the elements

of the permutation matrix P = WA, which after assuming that all

the sources have been successfully separated, ideally reduces to a

permutated and scaled version of the identity matrix.

Fig. 2 depicts the evolution of the performance index ρ(k) de-

fined above, when plotted against the number of iterations, which

here is set equal to the total number of samples. As revealed, the pro-

posed GΓD-based flexible ICA approach, considerably outperforms

the extended Infomax approach [5]. The proposed method, also

manages to achieve an extremely satisfactory steady-state value for

ρ, which settles to approximately −30 dB. In addition, it converges

faster to the correct solution, while in general requires about 3×
fewer iterations than the GGD-based driven NGA update and around

8× fewer iterations if compared against the extended ICA approach,

which operates on a fixed activation function regime. Worth noting

is also that the difference in performance between the GΓD and the
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Fig. 2. Evolution of the average value (dB) of the performance metric ρ(k)
for the extended and the GGD- and GΓD-based flexible ICA approaches.

GGD-based methods after a solution has been reached, is found to

be negligible. This can be attributed to the fact that in the partic-

ular experimental setup both activation functions handle and adapt

to the speech data equally well. Nonetheless, the GΓD-based score

function is still expected to generally favour speech sources with

more challenging (or sparse) distributions. Such an argument can be

strengthened even further by observing Fig. 3, which essentially il-

lustrates how the GΓD model fits against the actual PDF of the first

male speech source signal estimate. To carry out the model fitting,

the recovered speech signal is first processed as a series of indepen-

dent short-time frames. The frame length is set to 150 ms, while

the overlapping between successive frames is equal to 50%. The

shape and scale parameter estimates a, γ and β are then calculated

by resorting to the hybrid ML inference procedure and by averag-

ing across all their individual values at each frame. In this case, the

values obtained for the GΓD model are a = 0.717, γ = 1.059 and

β = 1.014. Note that for the same speech source, the GGD model

of (8), has yielded γ = 0.581 as the optimal value for the exponent.

7. CONCLUSIONS

In this paper, we have derived a novel parametric family of flexible

activation functions, based exclusively on the GΓD model. To cal-

culate the parameters of these functions in an adaptive BSS setup, we

have chosen to minimize the ML equation with the NM simplex op-

timization method. In theory, this should alleviate excessive compu-

tational cost requirements and allow for a fast practical implementa-

tion of the proposed technique. Motivated by the widespread appeal

of the entropy maximization algorithm, the newly proposed family

of score functions has also been applied to linear instantaneous mix-

tures of speech signals. Experimental results demonstrate that when

coupled with the NGA, the GΓD-based score yields a consistent in-

crease in convergence speed and separation performance, and thus

appears to be a very promising alternative over existing functions.
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