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ABSTRACT

This paper shows an effective speech/pause discrimination method
combining spectral noise filtering and fuzzy logic rules. The fuzzy
system is based on a Sugeno inference engine with membership
functions defined as combination of two Gaussian functions. Its op-
eration is optimized by means of a hybrid training algorithm com-
bining the least-squares method and the backpropagation gradient
descent method for training membership function parameters. The
fuzzy classifier consists of ten fuzzy rules defined in terms of the
denoised subband signal-to-noise ratios (SNRs) and the zero cross-
ing rate (ZCRs). An exhaustive analysis conducted on the Spanish
SpeechDat-Car databases is conducted in order to assess the perfor-
mance of the proposed method and to compare it to existing stan-
dard VAD methods. The results show improvements in detection
accuracy over standard VADs and a representative set of recently
reported VAD algorithms.

1. INTRODUCTION

The emerging wireless communication systems are demanding in-
creasing levels of performance and speech processing systems work-
ing in noise adverse environments. These systems often benefits
from using voice activity detectors (VADs) which are frequently
used in such application scenarios for different purposes. Speech/non-
speech detection is an unsolved problem in speech processing and af-
fects numerous applications including robust speech recognition [1,
2], discontinuous transmission [3, 4], real-time speech transmission
on the Internet [5] or combined noise reduction and echo cancella-
tion schemes in the context of telephony [6]. The speech/non-speech
classification task is not as trivial as it appears, and most of the VAD
algorithms fail when the level of background noise increases. Dur-
ing the last decade, numerous researchers have developed different
strategies for detecting speech on a noisy signal [7, 8, 9, 10] and
have evaluated the influence of the VAD effectiveness on the per-
formance of speech processing systems [11]. Most of them have
focussed on the development of robust algorithms with special atten-
tion on the derivation and study of noise robust features and decision
rules [12, 13, 14, 7]. The different approaches include those based on
energy thresholds, pitch detection, spectrum analysis, zero-crossing
rate, periodicity measure or combinations of different features.

Since its introduction in the late sixties [15], fuzzy logic marked
the beginning of a new era in defining the behaviour of many sys-
tems by means of qualitative expressions in a more natural way than
mathematical equations. Thus, an effective alternative to deal with
the problem of voice activity detection is to use these methodolo-
gies. Beritelli [16] showed a robust VAD with a pattern matching
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process consisting of a set of six fuzzy rules. However, no specific
optimization was performed at the signal level since the system oper-
ated on feature vectors defined by the popular ITU-T G.729 speech
coding standard [4]. This paper shows an effective VAD based on
fuzzy logic rules for low-delay speech communications. The pro-
posed method combines a noise robust speech processing feature ex-
traction process together with a trained fuzzy logic pattern matching
module for classification.

2. FUZZY LOGIC

Fuzzy logic [17] consists of a mapping between an input space and
an output space by means of a list of if-then statements called rules.
These rules are useful because they refer to variables and the adjec-
tives that describe those variables. The mapping is performed in the
fuzzy inference stage, a method that interprets the values in the input
vector and, based on some set of rules, assigns values to the output.

Fuzzy logic starts with the concept of a fuzzy set. A fuzzy set
F defined on a discourse universe U is characterized by a member-
ship function µF (x) which takes values in the interval [0, 1]. A
fuzzy set is a generalization of a crisp set. A membership function
provides the degree of similarity of an element in U to the fuzzy
set. A fuzzy set F in U may be represented as a set of ordered
pairs of a generic element x and its grade of membership function:
F = {(x, µF (x))|x ∈ U}.

The concept of linguistic variable was first proposed by Zadeh
who considered them as variables whose values are not numbers but
words or sentences in a natural or artificial language.

A membership function µF (x) is a curve that defines how each
point in the input space is mapped to a membership value (or degree
of membership) between 0 and 1. The most commonly used shapes
for membership functions are triangular, trapezoidal, piecewise lin-
ear and Gaussian. The membership functions were chosen by the
user arbitrarily in the past, based on the user’s experience. Now,
membership functions are commonly designed using optimization
procedures. The number of membership functions improves the res-
olution at the cost of greater computational complexity. They nor-
mally overlap expressing the degree of membership of a value to
different attributes.

Fuzzy sets and fuzzy operators are the subjects and verbs of
fuzzy logic. Fuzzy logic rules based on if-then statements are used
to formulate the conditional statements that comprise fuzzy logic. A
single fuzzy if-then rule assumes the form if x is F then y is G where
F and G are linguistic values defined by fuzzy sets. The if-part of
the rule is called the antecedent or premise, while the then-part of
the rule is called the consequent or conclusion. Interpreting an if-
then rule involves distinct parts: i) evaluating the antecedent (which
involves fuzzifying the input and applying any necessary fuzzy op-
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erators), and ii) applying that result to the consequent.

3. VOICE ACTIVITY DETECTION

Figure 1 shows the basic configuration of a fuzzy logic VAD which
comprises five principal components: i) the feature extraction pro-
cess prepares discriminative speech feature for the fuzzy logic clas-
sifier, ii) the fuzzification interface performs a scale mapping, that
transfers the range of values into the corresponding universe of dis-
course and performs the function of fuzzification, that converts in-
put data into suitable linguistic variables viewed as labels of fuzzy
sets, iii) the knowledge base comprises a knowledge of the applica-
tion domain and the objective of the VAD. It consists of a database,
which provides necessary definitions which are used to define lin-
guistic VAD rules and a linguistic (fuzzy) rule base, which charac-
terizes the VAD goal by means of a set of linguistic rules and the
user experience, iv) the decision making logic is the kernel of the
fuzzy logic VAD. It has the capability of simulating human decision
making based on fuzzy concepts and of inferring actions employ-
ing fuzzy implication and the inference rules, and v) the defuzzifi-
cation interface performs a scale mapping, which converts the range
of output values into the corresponding universe of discourse, and
defuzzification, which yields a nonfuzzy VAD flag.

3.1. Feature extraction

The feature extraction process is shown in figure 2. The input sig-
nal x(n) sampled at 8 kHz is decomposed into 25-ms overlapped
frames with a 10-ms window shift. The feature vector consists of
Zero Crossing Rates (ZCR) defined as:

ZCR =

∑N−1
n=1 | sign(x(n)) − sign(x(n − 1))|

2
(1)

and subband SNRs. For estimating the subband SNRs, the current
frame consisting of N= 200 samples is zero padded to 256 sam-
ples and power spectral magnitude X(ω) is computed through the
discrete Fourier transform (DFT). A denoising process based on a
Wiener filter is applied to improve the performance of the VAD in
high noise environments. Fig. 3 shows a block diagram of the de-
noising process. Thus, the noise spectrum is estimated during a short
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initialization period in order to design the optimum Wiener filter in
the frequency domain. The denoising process is described as fol-
lows:

i) Spectrum smoothing. The power spectrum is averaged over
two consecutive frames and two adjacent spectral bands.

ii) Noise estimation. The noise spectrum N(ω) is updated dur-
ing non-speech periods by means of a 1st order IIR filter on
the smoothed spectrum Xs(ω), that is, N(ω) = λN(ω) +
(1 − λ)Xs(ω) where λ = 0.99.

iii) WF design. First, the clean signal S1(ω) is estimated by com-
bining smoothing and spectral subtraction:

S1(ω) = γX ′(ω) + (1 − γ)max(Xs(ω) − N(ω), 0) (2)

where γ= 0.98. Then, the WF H(ω) is designed as:

H(ω) =
η(ω)

1 + η(ω)
(3)

where:
η(ω) = max

[
S1(ω)

N(ω)
, ηmin

]
(4)

and ηmin is selected so that the filter H yields a 20 dB max-
imum attenuation. Note that, X ′(ω) = H(ω)X(ω) is the
spectrum of the cleaned speech signal, assumed to be zero
at the beginning of the process and needed for designing the
WF through Eqs. 2 to 4. The filter H(ω) is smoothed in
order to eliminate rapid changes between neighbor frequen-
cies that may often cause musical noise. Thus, the variance
of the residual noise is reduced and consequently, the robust-
ness when detecting non-speech is enhanced. Smoothing is
performed by truncating the impulse response of the corre-
sponding causal FIR filter to 17 taps using a Hanning win-
dow.

iv) Frequency domain filtering. The smoothed filter Hs(ω) is
applied in the frequency domain to obtain the de-noised spec-
trum Xf (ω) = Hs(ω)X(ω).

Once the input signal has been denoised, the filterbank shown in
figure 2 reduces the dimensionality of the feature vector to a repre-
sentation including broadband spectral information suitable for de-
tection. Thus, the signal and the residual noise is passed through a
K-band filterbank which is defined by

EB(k) =
ωk+1∑
ω=ωk

Xf (ω); NB(k) =
ωk+1∑
ω=ωk

Nr(ω)

ωk = π
K

k k = 0, 1, ..., K − 1

(5)

and the subband SNRs are computed as

SNR(k) = 20 log10

(
EB(k)

NB(k)

)
k = 0, 1, ..., K − 1 (6)
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Fig. 4. Membership functions for subband SNRs

3.2. Inference engine

A Sugeno inference engine was preferred over Mamdani’s method
since: i) it is computationally efficient, ii) it works well with linear
techniques, iii) it works well with optimization and adaptive tech-
niques, iv) it has guaranteed continuity of the output surface and v)
it is well-suited to mathematical analysis.

Once the inputs have been fuzzified, we know the degree to
which each part of the antecedent has been satisfied for each rule.
The input to the fuzzy operator is two or more membership values
from fuzzified input variables. Any number of well-defined meth-
ods can fill in for the AND operation or the OR operation. We have
used the product for AND, the maximum for OR and the weighted
average as the defuzzification method. Finally, the output of the sys-
tem is compared to a fixed threshold η. If the output is greater than η,
the current frame is classified as speech (VAD flag= 1) otherwise it is
classified as non-speech or silence (VAD flag= 0). We will show later
that modifying η enables the selection of the VAD working point de-
pending on the application requirements.

3.3. Membership function definition

The initial definition of the membership functions is based on the
expert knowledge and the observation of experimental data. After
the initialization, a training algorithm updates the system in order to
obtain a better definition of the membership functions.

Two-sided Gaussian membership functions were selected. They
are defined as a combination of Gaussian functions

f(x; µ1, σ1, µ2, σ2) = f1(x; µ1, σ1)f2(x; µ2, σ2)

fi(x; µi, σi) =

{
exp

(
− (x−µi)

2

2σ2
i

)
x ≤ µi

1 x > µi

(7)

where the first function specified by σ1 and µ1, determines the shape
of the leftmost curve while the second function determines the shape
of the rightmost curve. Figures 4 and 5 show the membership func-
tions used for the problem addressed when four subband SNRs and
the ZCR were used as inputs to the fuzzy logic VAD.

3.4. Rule base

The rule base consists of ten fuzzy rules which were trained using
ANFIS [18]. It applies a combination of the least-squares method
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and the backpropagation gradient descent method for training mem-
bership function parameters to emulate a given training data set. An
study of the better conditions for the training processed was carried
out using utterances of the Spanish SpeechDat-Car database [19].
This database contains 4914 recordings using close-talking (channel
0) and distant microphones (channel 1) from more than 160 speak-
ers. The files are categorized into three noisy conditions: quiet, low
noisy and highly noisy conditions, which represent different driving
conditions. Four different training sets were used: i) quiet ch1, ii)
low ch1 iii) high ch1, and iv) a combination of utterances from the
three previous subsets. Training with data from the three categories
yielded the best results in speech/pause discrimination.

4. EXPERIMENTAL FRAMEWORK

This section analyzes the proposed VAD and compares its perfor-
mance to other algorithms used as a reference. The analysis is based
on the ROC curves, a frequently used methodology to describe the
VAD error rate. The Spanish SDC database [19] was used. The non-
speech hit rate (HR0) and the false alarm rate (FAR0= 100-HR1)
were determined for each noisy condition being the actual speech
frames and actual speech pauses determined by hand-labelling the
database on the close-talking microphone. Figure 7 shows the ROC
curves of the proposed VAD and other frequently referred algorithms
[12, 13, 14, 7] for recordings from the distant microphone in quiet
and high noisy conditions. The working points of the ITU-T G.729,
ETSI AMR and AFE VADs are also included. The results show
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Fig. 7. Comparative results. a) Quiet ch1, b) High ch1.

improvements in detection accuracy over standard VADs and a rep-
resentative set of recently reported VAD algorithms [12, 13, 14, 7].

5. CONCLUSIONS

This paper proposed an effective fuzzy logic voice activity detection
algorithm. The VAD is based on a Sugeno inference engine with
membership functions defined as combination of two Gaussian func-
tions. Its operation is optimized by means of a hybrid training algo-
rithm combining the least-squares method and the backpropagation
gradient descent method for training membership function parame-
ters. A comparison with the most representative standard VAD meth-
ods and recently reported algorithm was provided. The exhaustive
analysis conducted on the Spanish SpeechDat-Car database showed
relevant improvements when compared to G.729 and AMR VADs in
speech/pause detection accuracy and other existing proposals for a
representative set of noisy conditions.
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