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ABSTRACT

A reliable speech segmentation in noisy environments is desir-
able for segment-based speech enhancement and efficient coding.
Switching state space model with hidden dynamics has been shown
to lend itself naturally to the speech segmentation problem. How-
ever, when noise is present, the distorted observation features lead
to a poor recognition and segmentation performance. In this paper,
the Unscented Kalman Filtering (UKF) is used during inference
to compensate nonlinearly for the effect of noise on the observed
features in the log-frequency domain. The proposed algorithms re-
sulted in a much improved segmentation performance in a variety
of noises.

1. INTRODUCTION

Switching state-space model (SSM) has been used to model speech
for recognition and segmentation applications [1] [2]. While con-
ventional HMM can only model a sequence of discrete states, which
usually correspond to some speech units, SSM can also model a
smooth continuous hidden dynamics, reflecting the speech produc-
tion process [3]. This results in a compact representation of speech
with a good physically-related constraint which allows for devia-
tion caused by co-articulation and hence a more robust decoding.

While SSM has also been applied to noisy speech for speech
enhancement, both for listening [4] and as an enhanced front-end
feature extraction to a speech recognizer [5], none has been re-
ported for segmentation where phonetically meaningful units are
desired. On the other hand, SSM used in such speech segmen-
tation, such as in [1], has not attempted to address the problem
when noise is present. In this paper, we focus on the use of SSM
for speech segmentation under noisy circumstances. Although, the
optimal data-driven units, obtainable through learning, have shown
a better performance than phone units in speech recognition tasks
[2], some applications, such as the segment-based speech enhance-
ment and the phoneme-based coding, require accurate phone seg-
mentation.

The clean speech model presented here is an extension from
[1] to a mixture of Gaussians model, similarly to [2] and [3]. Us-
ing a mixture model can lead to a significant improvement over a
single Gaussian model. One of the difficulties involving the use of
SSM is the intractable exact inference. In this paper, the Gener-
alized Pseudo-Bayesian of order one and two (GPB1 and GPB2)
are presented as the way to do approximate inferences. An addi-
tive noise in time affects most frequency-domain features nonlin-

P.Jinachitra is sponsored by Toyota ITC, Palo Alto, USA.

early. For log-frequency type of features, an approximate nonlin-
ear observation model can be obtained. To deal with nonlinearity
in the observation model, the Unscented Kalman Filter (UKF) is
employed during the inference step.

In the remainder of this paper, we describe in more details the
SSM mixture model employed, the learning and then the approxi-
mate inference to decode the phoneme class sequence from a noisy
observation. We finish by presenting the results of segmentation
among various choices of parameters, algorithms and background
noises.

2. SWITCHING STATE SPACE OF MIXTURE MODELS

A clean speech utterance can be modeled using the following equa-
tions of standard SSM (see [1] for notation description)

xt = Am(St) · xt−1 + vt(St) (1)

yt = Cm(St) · xt + Dm(St) + wt(St) (2)

v(St) ∼ N (0, Qm(St)),w(St) ∼ N (0, Rm(St))

T (i, j) = Pr(St = i|St−1 = j), i, j = 1, . . . , |S| (3)

Pr(S0 = i) = πi, i = 1, . . . , |S| (4)

The hidden dynamic model at each time instant is determined
by the discrete state at that instant, St. The discrete states rep-
resent the phone classes while the continuous states reflect the
slowly varying articulatory-related parameters. The number of
phone classes is |S|, each consisted of m = 1, . . . , M dynamic
systems, i.e., within each class, from one step to the next, there
are M possible trajectories and hence M output Gaussians, mod-
eling output distributions which may be non-Gaussian or multi-
modal. The mixture distribution is mixed through the prior prob-
ability weights, αm = Pr(m|S), which will be obtained through
training.

2.1. Learning

The transition matrix and the prior probability in (3) and (4) are
both learned by counting from labeled frames of clean speeches
in the training set. Given the discrete state sequence, the continu-
ous state space parameters can be learned through the Expectation-
Maximization (EM) algorithm as follows:
E step : For each m, find the sufficient statistics

x̂t|Tk
= E(xt|y1:Tk

) (5)

Vt|Tk
= cov(xtx

′
t|y1:Tk

) (6)
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Vt,t−1|Tk
= cov(xtx

′
t−1|y1:Tk

) (7)

< x̂t|T x̂
′
t|T >= Vt,t|Tk

+ x̂t|T x̂
′
t|T (8)

< x̂t|T x̂
′
t−1|T >= Vt,t−1|Tk

+ x̂t|T x̂
′
t−1|T (9)

The statistics as shown of each component m are obtained by
Kalman smoothing each phone segment, k, and collecting over all
Ks phone class segments. To avoid having to collapse M distribu-
tions at every time-step, we assume that each component propagate
separately during the phone segment. Since each phone segment
is now represented by a mixture of components, at the end of each
segment, the smoothed states are combined to form a single Gaus-
sian state through moment matching for use in the following phone
segment. If the segment is too short, having only one frame, only
filtering is used to arrive at the required statistics from that seg-
ment.
M step : Denoting yt − Dm by ȳ where m is omitted, subjecting
to context, ML estimates of the system parameters can be found
from

Am =

"
KsX
k=1

TkX
t=2

ωt(m) < x̂t|T x̂
′
t−1|T >m

#

·

"
KsX
k=1

TkX
t=2

ωt(m) < x̂t−1|T x̂
′
t−1|T >m

#−1

(10)

Cm =

"
KsX
k=1

TkX
t=1

ωt(m)ȳk,tx̂
′
t−1|T,m

#

·

"
KsX
k=1

TkX
t=1

ωt(m) < x̂t|T x̂
′
t|T >m

#−1

(11)

Dm =

KsX
k=1

TkX
t=1

ωt(m) · yt/

KsX
k=1

TkX
t=1

ωt(m) (12)

Qm =

PKs

k=1

PTk

t=2 < x̂t|T x̂′
t|T >m −Am < x̂t|T x̂′

t−1|T >mPKs

k=1

PTk

t=2 ωt(m)
(13)

Rm =

PKs

k=1

PTk

t=1

ˆ
ωt(m)(ȳk,tȳ

′
k,t − Cmx̂t|T,mȳ′

k,t)
˜

PKs

k=1

PTk

t=1 ωt(m)
(14)

¯̂x1,m =

KsX
k=1

TkX
t=1

ω1(m)x̂1,m/

KsX
k=1

TkX
t=1

ω1(m) (15)

¯̂
V1,m =

KsX
k=1

TkX
t=1

ω1(m)(x1,m−¯̂x1,m)(x̂1,m−¯̂x1,m)′/

KsX
k=1

TkX
t=1

ω1(m)

(16)

αm =

KsX
k=1

TkX
t=1

ωt(m)/

KsX
k=1

Tk (17)

where ¯̂x1 and ¯̂
V1 are initial state and covariance estimates at time

t = 1 respectively. As usual, to avoid scaling ambiguity between
Cm and Qm, Cm is constrained to have unit columns. Also,

ωt(m) = p(mt|yt, St, Θt)

=
p(yt|xt, m, Θ) · p(mt|St, Θt)PM

m′=1 p(yt|xt, m′, Θ) · p(m′
t|St, Θt)

=
L(m) · αmPM

m′=1 L(m′) · αm′

(18)

where Θt represents all system parameters at time t for that it-
eration. L is the likelihood obtained from filtering or smoothing.
Note that each m is conditional on the state S so where an index m
is shown, it refers to the component m within a class S and hence
S is omitted for cleaner presentation.

The parameters Cm, Rm and αm were initialized using prob-
abilistic PCA for mixture distributions [6]. A and Q are initialized
using linear regression from the projected hidden states. Q and R

are forced to be diagonal for numerical stability during learning.

2.2. Inference

The ultimate goal is to find the globally smoothed posterior prob-
ability sequence, Pr(S1:T |Y1:T ), given the observations. This is
accomplished by using the likelihood calculated from the filtering
and smoothing and the trained discrete state transition matrix, as
in normal GPB1 or GPB2 algorithm. The difference in this work
from others is the use of mixture model in GPB1 and GPB2 as
well as the noise compensation in inference using UKF and a non-
linear noisy observation model. The classification of each frame is
taken to be the class with the highest smoothed posterior (MAP so-
lution). Phone classifications through smoothing result in smooth
and robust segmentation with few spurious decisions. Smoothing
also gives a sharper response and hence more accurate segmenta-
tion than filtering.

2.2.1. Nonlinear Noisy Observation Model

When the observed features are based in the log-frequency do-
main, for example, the MFCC, the effect of noise can be approxi-
mately expressed by [5]

Z(k) ≈ F · log(10F †·Y (k) + 10F †·N(k)) (19)

where Z(k), Y (k) and N(k) are the kth MFCC of the observa-
tion, the clean speech and the additive noise, respectively, as cal-
culated from power spectral output of a Mel filter bank. F is the
DCT matrix used to convert a log power spectrum to a cepstrum,
whereas F † is its right-inverse matrix such that F · F † = I . When
only log-Mel filter bank (LMFB) outputs are used, F and F † are
omitted. The expression for log-Mel filter bank is precise only if
the clean speech and the noise are in-phase, hence the approxima-
tion [7].

2.2.2. GPB1 and GPB2 Inference Using UKF

In addition to the set of equation (1)-(4), which models a clean
speech, we now have another layer of the generative model for
the noisy speech observation Z(t) as given by equation (19). As
mentioned earlier, we employed GPB1 and GPB2, with an incor-
poration of the UKF, as approximate inference methods.

The basic operation of the GPB(r) algorithm is to approximate
|S|t Gaussian components at time t by |S|(r−1) Gaussians using
moment matching. The resulted Gaussian after collapsing through
moment matching is optimal in the Kullback-Leibler sense and the
error can be shown to be bounded despite the approximations. In
the forward-pass, at each time step, the current state is filtered us-
ing each of the class’s component systems. For GPB1, the collaps-
ing is done at each step, keeping only one state estimates, while for
GPB2, we keep |S| state estimates, one for each possible discrete
state. See [8] for more details on GPB1 and GPB2 on SSM.
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UKF is a method of state inference in nonlinear dynamical sys-
tem [9]. Instead of linearizing the nonlinearity as in the extended
Kalman filtering (EKF), UKF updates the states by passing a de-
terministically sampled set of points that characterize the current
state’s distribution through the dynamic system and approximate
the filtered distribution from them. The accuracy is generally up
to second order, which is better than EKF while demanding sim-
ilar computational load. In fact, our experiments using EKF for
state update have been unsuccessful, without regularization, par-
tially due to numerical instability of the Jacobian mainly caused
by the exponential in the observation model.

For GPB1, UKF can be directly applied in the filtering step,
giving filtered hidden state and covariance estimates [9]. Smooth-
ing is not allowed in GPB1, however, but we can approximate it
by simply repeating the filtering process but in the time-reverse
manner. The smoothed posterior is calculated from the filtered
posteriors and the transition matrix, backward in time. On the
other hand, GPB2 allows for smoothing but this requires an esti-
mation of the cross-covariance between adjacent time steps which
is non-standard for the UKF. It can be shown that the filtered cross-
covariance, Vt,t−1|t, can be expressed as

Vt,t−1|t = AtVt,t|t − KtE[(zt − ẑ
−
t )(xt−1 − x̂

−
t−1)] (20)

E[(zt−ẑ
−
t )(xt−1−x̂

−
t−1)] ≈

X
i

W(c)
i [(Zt)i−z

−
t ][(Xt−1)i−x

−
t−1]

T

(21)
where W(c)

i is the conventional Unscented Transform weight for
the ith sample point, (Zt)i is the unscented transform output point
from its corresponding “Sigma point”, (Xt)i. z−

t is the predicted
observation and x−

t−1 is the predicted state from the previous time-
step. The last bracket in (21) can be stored directly for each pre-
vious time-step as the difference. Due to the linearity of the hid-
den continuous state dynamic model, the smoothing is exactly the
same as in conventional Kalman smoothing. For details of other
steps in UKF, see [9]. In this work, the noise feature is also as-
sumed to be deterministic in equation (19), being characterized
only by its mean for simplicity.

Although initial continuous states and covariances are not gen-
erally important, it was found that using initial state and covari-
ances estimates from training (equation (15) and (16)), consis-
tently gives better accuracy, especially at low SNR, than estimating
by reverse projection from the first frame observation, albeit only
for a few decimals of a percentage point.

At each step in both forward- and backward-pass, multiple
Gaussians resulting from different component propagation need
to be collapsed in order to keep the number of distributions finite.
Experimentally, collapsing components within the same class be-
fore collapsing with others give the same performance as simulta-
neously collapsing all components. Only the latter is used for the
reported results, nevertheless. Also, the combined likelihood of
class S at time-frame t is calculated from

L(S) =
X
m

αm L(m) (22)

3. EXPERIMENTS AND RESULTS

For comparison with [1], we use the same training set of ten female
speakers in DR1 of the TRAIN data in TIMIT and the rest of four
female speakers for testing. The phone classes are : 1) vowels,

% AV GPB2 GPB2(2) GPB2(4) GPB2(6)
LMFB 64.5 76.9 78.6 80.4 81.9
MFCC N/A 81.2 82.7 82.8 82.9

Table 1. Clean speech phone classification accuracy in % of
original approximate Viterbi (AV), the single Gaussian GPB2 and
GPB2 with mixture model where M = 2, 4 and 6 (in parentheses),
using LMFB and MFCC as features.

% Vowels Nasals Fric. Sil.
Vowels 92 4 4 0
Nasals 37 59 3 1
Fric. 14 2 77 6
Sil. 3 5 18 73

Table 2. The confusion matrix in % using GPB2(6) with MFCC
as features on clean speech test set

semi-vowels and glides, 2) nasals, 3) fricatives and stop releases,
and 4) stop closures and pauses. The features are extracted frame-
by-frame using a frame length of 20 ms with 10 ms overlap and
Hamming window applied. The dimension of the features is kept
at 10 for both LMFB and MFCC while the hidden continuous state
dimension is 2. Note that, however, MFCC is derived from 40
Mel-filter bank before getting reduced to 10 via the DCT.

Table 1 shows the classification accuracy results of the clean
speech test set where the numbers shown are the percentages of
frames correctly classified, compared to frame’s time-majority ground
truth labels. Note that this measure will favor an algorithm which
does well with the first phone class due to more number of frames
encountered being vowels. This should be considered as reason-
able for real world applications rather than an unfair bias. Both
GPB1 and GPB2 outperform the approximate Viterbi algorithm
used in [1], which keeps only the maximum likelihood node path in
each forward-pass step. GPB2 performs slightly better than GPB1
and the performance increases with the number of mixture com-
ponents, at the expense of more computation. In fact, approximate
Viterbi fails dramatically using MFCC. Note that, however, in [1],
approximate Viterbi was used more successfully, as confirmed by
our own experiment, with line spectral frequency features, which
should be more linear than both LMFB and MFCC, but has no
closed-form expression in noise. Nevertheless, using a mixture
model is encouraging. For a complete picture, Table 2 also shows
the results by class from the best total accuracy achieved from us-
ing GPB2-UKF(6), where 6 is the number of mixture components,
with MFCC as features.

For noisy speech segmentation, the noise feature means, N(k),
are assumed to be stationary and are estimated from some silence
frames at the start of the file. Table 3 shows the results using GPB1
and GPB2 with mixture model and UKF noise compensation, av-
eraged over SNR= 0, 5, . . . , 20 dB.

The results in Table 3 show that the proposed scheme can
greatly improve overall frame recognition rate for both GPB1 and
GPB2. GPB2 outperforms GPB1in all cases and all SNR’s (not
shown in details due to space limit). While the two-mixture model
consistently outperforms the single one at all SNR’s, the bene-
fits of having more than two mixture components is less certain,
especially at low SNR when it comes to the noisy segmentation.
This is probably due to more confusion under approximated com-
pensation and estimation or perhaps under-training due to more
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% white car babble
GPB2 49.3 38.4 49.6 32.4 46.5 37.9

Feat. Sub.+GPB2 57.0 60.8 53.7 55.1 54.3 55.8
Denoise+GPB2 56.0 54.8 57.2 51.6 55.5 55.1

GPB1-UKF 64.6 65.4 65.3 66.9 63.6 66.1
GPB2-UKF 62.8 67.2 66.5 68.4 64.9 67.8

GPB2-UKF(2) 71.1 69.4 67.4 68.5 64.9 64.9
GPB2-UKF(4) 70.5 66.8 68.7 69.1 64.7 62.3
GPB2-UKF(6) 70.4 63.3 67.2 60.4 64.9 57.0

Table 3. Noisy speech phone classification accuracy in % using
basic single Gaussian GPB2, noise feature subtraction and ba-
sic GPB2, front-end denoising and basic GPB2, GPB1-UKF and
GPB2-UKF with mixture model where M = 2, 4 and 6, in vari-
ous types of noise. The first and second column of each noise has
LMFB and MFCC as features respectively

% Vowels Nasals Fric. Sil.
Vowels 89 8 1 2
Nasals 35 54 7 4
Fric. 14 11 45 30
Sil. 3 8 30 59

Table 4. The confusion matrix using GPB-UKF(4) and LMFB as
features in a car noise environment, SNR = 10 dB

parameters. For comparison, simply estimating clean speech fea-
tures solving (19) before using basic GPB2 improves only mod-
erately and so does applying front-end denoising on the corrupted
speeches, using the MMSE log-spectral estimator by Ephraim and
Malah [10]. The results from relatively non-stationary babble noise
still show a comparable improvement. An example of by-class ac-
curacy result is shown in Table 4 for car noise with SNR = 10
dB. As expected, despite the compensation, the fricative class is
misclassified as silence while other classes are greatly improved.
Especially in the case of white noise, most of the salient feature at
high frequency of the class three member is buried in noise, mak-
ing it difficult to get recognized. It should be mentioned that with-
out noise compensation, most phones are mistaken as the fricative
class for white noise, as the vowel class for the car noise and as
nasals for babble noise, depending on the characteristics of each
noise.

Figure 1 shows an example utterance in car noise and its clas-
sification/segmentation results using GPB2-UKF(4) with MFCC
as features. Note that fricatives such as /s/ is hardly evident in
noise with a rather low sampling rate of 8 kHz, yet can still be de-
tected. Using LMFB instead can only detect the fricatives such as
/sh/ and /ch/. Further improvements in the choice of features, the
sampling rate increase, other forms of approximate inference and
noise tracking, may be pursued as future works.

4. CONCLUSIONS

Algorithms for robust noisy speech segmentation into phoneme
classes have been presented. They employ a mixture model of
the SSM as the speech and observation model, with the UKF as a
means to compensate for nonlinear observation model caused by
the noise on the observed features. The results have shown signifi-
cant improvements over the uncompensated algorithms especially
under stationary noises and two mixture components.
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Fig. 1. A spectrogram plot of an utterance in 10 dB car noise (top)
and the classification results (blue/circles) using GPB2-UKF(4)
along with ground truth labeling (red/dots) (bottom)
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