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ABSTRACT

Speech signals, especially voiced speech, can be better modeled
by non-Gaussian autoregressive (AR) models than by Gaussian
ones. Non-Gaussian AR estimators are usually highly non-linear
and computationally prohibitive. This paper presents an efficient
algorithm that jointly estimates the AR parameters and the exci-
tation statistics and dynamics of voiced speech signals. A model
called the Hidden Markov-Autoregressive model (HMARM) is de-
signed for this purpose. The HMARM models the excitation to
the AR model using a Hidden Markov Model with two Gaussian
states that have, respectively, a small and a large mean but identi-
cal variances. This formulation enables a computationally efficient
exact EM algorithm to learn all parameters jointly, instead of re-
sorting to pure numerical optimization or relaxed EM algorithms.
The algorithm converges in typically 3 to 5 iterations. Experimen-
tal results show that the estimated AR parameters have much lower
bias and variance than the conventional Least Squares solution. We
also show that the new estimator has a very good shift-invariance
property that is useful in many applications.

1. INTRODUCTION

Autoregressive (AR) modeling has been one of the most im-
portant techniques in speech signal processing. While the classi-
cal Least Squares (LS) solution, also known as LPC analysis, is
computationally simple, it relies on a Gaussian AR model assump-
tion. However, many important natural signals, including speech
signals, are found to be far from Gaussian. The mismatch of a
Gaussian model to a non-Gaussian signal causes an unnecessarily
large variation in the estimates. This is supported by the fact that
the Cramer-Rao bound for the variances of the AR estimators is lo-
wer in the non-Gaussian case than in the Gaussian case [1]. Smal-
ler variances of AR estimators are desirable in many speech pro-
cessing applications. As an example, in linear predictive coding,
when a sustained vowel is segmented into overlapping frames that
are subsequently encoded, small variance and shift-invariance pro-
perty of the estimates of AR parameters are very beneficial in re-
ducing the entropy and thus the needed bit rate for encoding the
AR parameters. Non-Gaussian modeling of speech signals also re-
duces the bias of the AR estimator caused by the spectral sampling
effect of the impulse train in voiced speech excitations. Applica-
tions in speech synthesis, speech recognition, and speech enhan-
cement can benefit from these properties of non-Gaussian AR mo-
deling.
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We see the non-Gaussian AR model estimation problem as
a blind system identification problem since the AR parameters
and the non-Gaussian statistics of the excitation need to be esti-
mated jointly. Reported works in this field include Higher Order
Statistics (HOS) based methods (see [2] for a comprehensive re-
view), Gaussian Mixture Model (GMM) based methods [1, 3, 4]
and non-linear dynamical methods [5]. The HOS-based methods
do not require explicit knowledge of the excitation probability den-
sity function (pdf), but tend to produce high-variance estimates
when the length of the data record is small [3] and are associated
with high computational complexity due to the bispectrum calcu-
lation. The GMM-based methods estimate their parameters using
the Maximum Likelihood (ML) criterion. Since the exact ML so-
lution for non-Gaussian signals typically involves solving a set
of highly non-linear equations, it has to be solved by computa-
tionally complex numerical algorithms, or by solving for an ap-
proximation of the ML solution. In [1], the ML solution is sol-
ved by a conventional Newton-Raphson optimization algorithm.
In [4], the AR parameters and the excitation probability density
function (pdf) are separately estimated in a recursive manner to
approximate the joint estimation in a tractable way. In [3], the AR
parameters and the excitation pdf are estimated by a generalized
EM (GEM) algorithm, which relaxes from the standard EM al-
gorithm by breaking the multi-dimensional optimization into re-
cursive one-dimensional optimizations. The price to pay for the
GEM is a slower convergence rate than the EM. The non-linear
dynamic method proposed in [5] estimates the coefficients of an
inverse filter by minimizing a dynamic-based complexity measure
called phase space volume (PSV). This method does not assume
any structure of the excitation, but the computation of PSV is ra-
ther involved.

Most of the reported non-Gaussian AR modeling techniques
are for general purposes. While being applicable to any probabi-
lity distribution, this also makes them less efficient in handling
speech signals, whose production mechanism is well known and
implies powerful structures in the signal. In this paper, we pro-
pose an algorithm that is designed to exploit the structure of voi-
ced speech signals, aiming at better computational efficiency and
data efficiency. The algorithm jointly estimates the AR parameters
and the excitation statistics and dynamics based on a ML criterion.
Here the voiced speech signal is modeled by a Hidden Markov-
Autoregressive Model (HMARM), where the excitation sequence
is modeled by a Hidden Markov Model (HMM) that has two states
with Gaussian emission densities of different means but same va-
riances and then convolved with an AR filter. The HMARM para-
meters can be learned efficiently by an exact EM algorithm consis-
ting of a set of linear equations. This model is different from the Li-
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near Predictive HMM (LP-HMM), or Autoregressive HMM (AR-
HMM) used in [6] and [7]. The AR-HMM applies its dynamic
modeling on tracking the AR model variation along frames, while
the proposed HMARM applies dynamic modeling on tracking the
impulse train structure of the excitation within a frame.

The remainder of this paper is organized as follows. Section 2
describes the problem formulation and derives the EM algorithm.
The algorithm is evaluated with synthetic signals and speech si-
gnals in Section 3. Conclusion is made in Section 4.

2. THE METHOD

The speech production mechanism is well modeled by the
excitation-filter model, where an AR(p) filter models the vocal
tract resonance property and an impulse train models the exci-
tation of voiced speech. To improve naturalness of the speech, a
white noise component is added to the impulse train. This can be
expressed in the following equations :

x(t) =

pX
k=1

g(k)x(t− k) + r(t) (1)

r(t) = v(t) + u(t), (2)

where x(t) is the signal, g(k) is the kth AR coefficient, and r(t) is
the excitation. The excitation sequence is the sum of an impulse
train v(t) and a white Gaussian noise sequence u(t) with zero
mean and variance σ2. This noisy impulse train structure is per-
fectly suitable for stochastic dynamic modeling. We design a two-
state HMARM whose diagram is shown in Fig.1. The state qt at
time t selects according to the state transition probability aqt−1qt

one of two states. The emission pdfs of the two states are Gaussian
pdfs with identical variances σ2, and a small mean mr(1) and a
large mean mr(2) respectively. The small mean is close to zero,
and the large mean is equal to the amplitude of the impulses. The
emission outcome constitutes the excitation sequence r(t), which
is independent of r(l) for l �= t and only dependent on the state qt.
The excitation r(t) is then convolved with an AR(p) filter with co-
efficients [g(1), · · · , g(p)] to produce the observation signal x(t).
The objective of the algorithm is to learn the model parameters
φ = [A, mr(1), mr(2), σ

2, g(1), · · · , g(p)] given a frame of si-
gnal x with length T , where the state transition matrix A = (aij),
with i, j ∈ (1, 2).

N `
r(t); mr(j), σ2

´
qt

r(t)

aqt−1qt

1
G(z)

hidden unit

visible unit
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Fig. 1. A generative data structure of the HMARM.

We now define the notations for the HMARM model. Let α(j, t)
and β(i, t) denote the forward and backward likelihoods as defi-
ned in the standard HMM [8], aij denote the state transition (state

i to state j) probability, br(j, t) denote the observation pdf (emis-
sion pdf) of the excitation r(t) given the state qt = j, which is a
Gaussian distribution

br(j, t) = N `
r(t);mr(j), σ

2´
, (3)

and bx(j, t) denote the observation pdf of the signal x(t) given
the state qt = j. From (1) and (3), bx(j, t) can be shown to be a
Gaussian process with a varying mean mx(j, t),

bx(j, t) = N `
x(t);mx(j, t), σ2

´
, (4)

where

mx(j, t) =

pX
k=1

g(k)x(t− k) + mr(j). (5)

The forward and backward likelihood inductions are given by

α(j, t) =

» NX
i=1

α(i, t − 1)aij

–
bx(j, t), (6)

β(i, t) =

» NX
j=1

aijbx(j, t + 1)β(j, t + 1)

–
, (7)

respectively. Now define ξ(i, j, t) to be the probability of being in
state i at time t and in state j at time t + 1, i.e. ξ(i, j, t) = p(qt =
i, qt+1 = j|x, φ). One can evaluate ξ(i, j, t) by

ξ(i, j, t) =
α(i, t)aijbx(j, t + 1)β(j, t + 1)PT−1

t=0 aqtqt+1bx(qt+1, t + 1)
. (8)

Define γ(i, t) =
PN

j=1 ξ(i, j, t). It can then be shown that the

quantity
PT−1

t=1 γ(i, t) represents the expected number of transi-
tions made from state i, and

PT−1
t=1 ξ(i, j, t) represents the expec-

ted number of transitions from state i to state j [8].
Now we derive the EM algorithm. Let bold face letters x and

q denote a frame of signal and the state vector of the correspon-
ding frame of excitation, respectively. We define the complete data
to be (x,q). Instead of maximizing the log-likelihood log p(x|φ)
directly, we maximize the expectation of the complete data likeli-
hood log p(x,q|φ) over the states q given the data x and current
estimate of φ, denoted by φ̃. So the function to be maximized in
each iteration is written as :

Q(φ, φ̃) =
X
q

p(x,q|φ̃)

p(x|φ̃)
log p(x,q|φ) (9)

=
X
q

p(x,q|φ̃)

p(x|φ̃)

„ TX
t=1

log aqt−1qt

+

TX
t=1

log bx

`
qt, x(t)

´«
(10)

=
X

i

X
j

X
t

p(x, qt−1 = i, qt = j|φ̃)

p(x|φ̃)
log aqt−1qt

+
X

j

X
t

p(x, qt = j|φ̃)

p(x|φ̃)
log bx

`
qt, x(t)

´
, (11)

where (10) follows from the identity

p(x,q|φ) =
TY

t=1

aqt−1qtbx

`
qt, x(t)

´
,
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and (11) follows from the first order Markov assumption. The first
term in (11) concerns only aij and the second term concerns the
rest of the parameters. Thus the optimization can be done on the
two terms separately. The re-estimation equation of aij is found
by the Lagrange multiplier method, and is identical to the standard
Baum-Welch re-estimation algorithm :

âij =

PT−1
t=1 p(x, qt−1 = i, qt = j|φ̃)PT−1

t=1 p(x, qt−1 = i|φ̃)
=

PT−1
t=1 ξ(i, j, t)PT−1
t=1 γ(i, t)

.

(12)
We denote the second term of (11) by Q(φ, b̂). Following (1) and
(4) we can write

Q(φ, b̂) =
X

j

T−1X
t=1

p(x, qt = j|φ̃)

p(x|φ̃)

„
log

1√
2πσ2

− 1

2σ2

“
x(t) − mx(j, t)

”2
«

. (13)

The re-estimation equations of the rest of the parameters are found
by setting the partial derivatives of (13) to zero, and solving the
equation system. For g(k), we have p equations :

X
j

T−1X
t=1

γ(j, t)
“
x(t) − mx(j, t)

”
x(t− k) = 0, k = 1, · · · , p.

(14)
where γ(j, t) = p(x,qt=j|φ̃)

p(x|φ̃)
is now interpreted as the posterior of

state j at time t given the observation x and φ̃. For mr(j), we get
two equations :

T−1X
t

γ(j, t)
“
x(t) − mx(j, t)

”
= 0, j = 1, 2. (15)

For σ2, we get

cσ2 =

P
j

PT−1
t γ(j, t)

“
x(t) − mx(j, t)

”2

P
j

PT−1
t=1 γ(j, t)

. (16)

Equation (14) and (15) form p + 2 coupled linear equations which
can be solved analytically. Then (16) can be solved by inserting
the estimated g(k) and mr(j).

In this model, mx(j, t) can be interpreted as the linear predic-
tion of x(t) taking into account the excitation dynamics, as shown
in (5). The re-estimation equations also have intuitive interpreta-
tions. In (12), aij equals the expected number of transitions from
state i to state j divided by the expected number of transitions
made from state i ; Equation (14) is a multi-state version of the or-
thogonality principle ; Equation (15) tells that the prediction error
weighted by state posterior is of zero mean ; and (16) calculates the
mean of the prediction error power weighted by the state posterior
as the variance of the stochastic element of the signal.

The existence of linear solutions to the maximization of the
Q function makes fast convergence. This is a direct benefit from
our proposed signal model. Compared to the GMM-based method
in [3], which has no analytical solution to the maximization of Q
function, the HMM in our model is constrained to have states with
identical emission variance. It is this constraint that renders the set
of non-linear equations linear, without compromising the validity
of the model.

A GMM with similar constraint can be used in place of the
HMM in our signal model, and the EM equations can be derived
in the same way as shown above with proper changes in the de-
finition of α and β (and ξ(i, j, t) is not needed in the GMM). In
our experience, this constrained GMM-AR model results in a slo-
wer convergence rate and slightly worse estimation accuracy than
the HMARM. This is expected since the GMM lacks capability
of dynamic modeling, while the impulse train does show a clear
dynamic structure.

Finally, we point out an implementation issue of the HMARM
estimation. Since the signal model is a causal dynamic model and
the analysis is usually frame-based, the ringing from the last im-
pulse of the previous frame has an undesired impact on the cur-
rent frame estimates. This is because the estimator does not see
the previous impulse but its effect is there. This could sometimes
degrade the performance mildly. We therefore suggest to do a pre-
processing that removes the ringing from the previous frame, or
simply set the signal before the first impulse to zeros. The latter is
used in our experiments.

3. EXPERIMENTAL RESULTS

We now experimentally compare the spectral distortion, the
variance, and the bias of the AR parameters estimated by the pro-
posed HMARM analysis and the LPC analysis. To get different
realizations of an AR process, we shift a rectangular window along
a long segment of the signal by one sample each time. Every shift
produces a different realization frame of the AR process. A small
variance of the estimates based on shifted realizations is also known
as the shift-invariance property. The LPC analysis has a poor shift-
invariance property when it is applied to voiced speech. This is be-
cause its underlying Gaussian model does not fit the non-Gaussian
nature of the excitation of the voiced speech.

First, to have access to the true values of the AR parameters
of a signal, we use a synthetic signal that mimics a voiced speech
signal. The signal is analyzed by the HMARM and the LPC ana-
lysis respectively for 50 realizations with a frame length of 320
samples. The 50 realizations of estimated AR spectra are compa-
red to the true AR parameters and the difference is measured by
the Log-Spectral Distortion (LSD) measure. The LSD versus the
shift is shown in Fig 2. It is clear that the proposed method has a
flat distortion surface and this surface is lower than the LPC’s. It is
important to note that the LPC analysis encounters huge deviation
from the true values in the second half of the plot. This is where
a large “hump” in the signal comes into the analysis frame. The
large humps in the signal are caused by the impulses in the excita-
tion, which represent the non-Gaussian structure of the signal. The
bias is 0.092 for the HMARM analysis, and compared to the 0.197
for the LPC analysis, accounts for an improvement of more than 6
dB. The variance is 0.128 for the HMARM and 9.69 for the LPC
analysis, representing a variance reduction of 18 dB.

Second, we test the shift-invariance property with true speech
signals. The AR spectra of four different sustained voiced pho-
nemes are estimated 50 times with one sample shift each time. The
frame length is set to 256 samples. The spectra are plotted in Fig 3.
The estimates by the HMARM show good consistency, while the
LPC analysis appears to be poor. In Fig. 4 we show the prediction
residuals of the signal using the AR parameters estimated by the
HMARM and the LPC respectively. It is clear that the residual of
the HMARM has more prominent impulses, and less correlation in
the valleys. From, as one example, a speech coding point of view,
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Fig. 2. (a) : The Log-Spectral Distortion of the AR spectra. (b) :
the synthetic signal waveform used in the test.

the lower variance of the AR estimates reduces the entropy of the
AR parameters, and the more impulsive residual is also easier to
code.

As it is well known that a properly chosen window can reduce
the variance of the LPC estimates, we also conducted comparisons
between the HMARM analysis and the Hamming-windowed LPC
analysis. For the synthetic signal, the variance of the Hamming-
windowed LPC is 1.197, which is still 9.7 dB higher than that
of the HMARM. Although its variance is reduced, the Hamming-
windowed LPC in general suffers from larger bias and lower spec-
tral resolution. Due to space limit, more results will be presented
in a following paper.

4. CONCLUSION

A non-Gaussian AR model is proposed to model the voiced
speech signal. This model enables an efficient EM algorithm that
consists of a set of linear equations. The algorithm jointly esti-
mates the AR parameters of the signal and the dynamics of the
excitation that is highly non-Gaussian in the voiced speech case.
The experimental results using synthetic signals and real speech
signals show that the algorithm has a good shift-invariance pro-
perty, and the variance and bias are significantly smaller than the
classical LPC analysis.
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