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ABSTRACT

We consider the problem of robust speech recognition in the
car environment. We present a new dynamic noise adaptation al-
gorithm, called DNA, for the robust front-end compensation of
evolving semi-stationary noise as typically encountered in the car
setting. A large dataset of in-car noise was collected for the eval-
uation of the new algorithm. This dataset was combined with the
Aurora II framework to produce a new, publicly available frame-
work, called DNA + AURORA II, for the evaluation of adaptive
noise compensation algorithms. We show that DNA consistently
outperforms several existing, related state-of-the-art front-end de-
noising techniques.

1. INTRODUCTION

We consider the problem of speech recognition in the car envi-
ronment, motivated by the goal of noise-robust, speech-based user
interaction with onboard navigation and control systems.

Environmental compensation in the car environment is chal-
lenging because the acoustic background is generally non-stationary
and hard to characterize. This makes both matched training and
model-based noise removal at the front-end difficult to implement
effectively in practice.

The acoustic background is generally comprised of a wide va-
riety of noise types, including: a) quasi-stationary evolving dis-
turbances (acceleration and deceleration related road, wind, and
engine noise; passing cars), b) abrupt, step changes in the quasi-
stationary noise (an abrupt change in the road surface), c) noise
transients (shutting doors, car signals, bumps, horns, windshield
wipers), as well as d) more complicated disturbances (the radio,
secondary speakers). In this paper, we focus on quasi-stationary
noise with abrupt changes as encountered in real data.

One general approach to speech denoising has been to utilize
trained codebooks of clean speech and noise to separate out the
unwanted noise signal. Several results demonstrating substantial
reductions in word error rate (WER) under stationary noise condi-
tions have been reported [1, 2]. Static noise models, however, are
not well suited to typical car noise, which predominantly consists
of semi-stationary evolving noise components.

An alternate approach to using static noise models is to ’track’
the background noise process stochastically [3, 4].

In this paper, we bring together and extend upon these ap-
proaches and present a new Dynamic Noise Adaptation algorithm
(DNA) for simultaneously tracking evolving semi-stationary noise
and producing clean speech estimates.

In addition, we introduce a new, publicly available extension
of the Aurora II framework, called the DNA + AURORA II evalu-
ation framework. The framework is based upon a large database of

challenging in-car noise (single microphone, recordings 5-20 min-
utes long) and a collection of scripts for embedding and extracting
speech utterances in the data according to a specified utterance gap
profile. The framework provides a public platform for the system-
atic development, analysis, and comparison of adaptive speech de-
noising algorithms on realistic data, in realistic human-computer
interaction modes.

Finally, we present recognition results on the new DNA + AU-
RORA II task demonstrating the performance of our DNA algo-
rithm, and show that it outperforms several existing, related state-
of-the-art noise compensation algorithms.

2. MODEL OF NOISY SPEECH

The model for noisy speech in the time domain is (omitting the
channel for simplicity)

y[t] = x[t] + n[t] (1)

where x[t] denotes the clean signal, n[t] denotes the noise, and y[t]
denotes the noisy signal. In the power spectrum, the relationship
becomes:

|Y (f)|2 = |X(f)|2 + |N(f)|2 − 2|X(f)||N(f)|cos(φ) (2)

where φ = � X(f) − � N(f). After the Mel transform and the
logarithm [1] we arrive at the following relationship in the log Mel
power spectral domain:

y = ln(exp(x) + exp(n)) + ε (3)

where ε models the phase term in (2), and is assumed to be a zero
mean diagonal covariance Gaussian random variable. For a given
processing frame t, then, the noisy speech features yt are modelled
as conditionally Gaussian:

p(yt|xt,nt) = N (yt; ln (exp(xt) + exp(nt)) ,Ψ) (4)

where Ψ is the covariance of εt. We use a mixture of diagonal
covariance Gaussians to model clean speech:

p(xt) =
∑
sx

t

πsx
t
N(xt; µsx

t
, Σsx

t
) (5)

and model the noise at time t, conditioned on the previous obser-
vations y0:t−1, as a mixture of diagonal covariance Gaussians:

p(nt|y0:t−1) =
∑
sl

t

πsl
t
N(nt; µsl

t|t−1,Σsl
t|t−1 + Σln) (6)

where µsl|t−1 and Σsl|t−1 are the mean and covariance estimates
of the conditional prior of the continuously evolving component
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of the noise at time t, which we call the noise level and denote
by lt, and Σln is the covariance of the random component of the
noise, which is modelled as zero mean and Gaussian. A detailed
description of our noise model and the associated noise-estimation
propagation algorithm will be given in sections 3 and 4.

The conditional posterior distribution of the speech and noise
at frame t given y0:t, sx

t , and sl
t is given by:

p(xt,nt|y0:t, s
l
t, s

x
t ) =

p(nt|sl
t,y0:t−1)p(xf

t |sx
t )p(yt|xt,nt)∫

nt

∫
xt

p(nt|sl
t,y0:t−1)p(xf

t |sx
t )p(yt|xt,nt)

(7)

Because the relationship (3) is non-linear, (7) cannot be evaluated
analytically. An approximation to this conditional posterior can be
computed via the Algonquin or Laplace methods, which are de-
scribed in detail in [1, 2]. The essence of these approaches is to
iteratively linearize (3) and re-estimate a (conditionally) Gaussian
posterior distribution of the speech and noise using (7), until con-
vergence.

3. DYNAMIC NOISE MODEL

Our dynamic noise model is based upon the observation that con-
tinuously evolving noise in the log Mel power spectral domain
(LMPSD) at a given frequency can generally be well modelled
as consisting of two distinct components: a slowly evolving time-
varying component, which we call the noise level; and a zero mean
IID random component, which mixes additively with the noise
level in the LMPSD at each frequency to generate the corrupting
noise signal.

Define lt as the underlying noise level at frame t, and define
the prior for l0 as a (diagonal-covariance) mixture of Gaussians,
with conditional prior at each frequency given by:

p(l0|sl
0) = N(l0; µsl

0
, σsl

0
) (8)

where frequency sub-scripts have been omitted to avoid notational
clutter. We model the temporal evolution of the noise level at each
frequency as a first-order AR process:

p(lt+1|lt) = N(lt+1; lt, σ
2
d) (9)

and the conditional probability of the noise nt given the noise level
at each frequency as zero-mean and Gaussian:

p(nt|lt) = N(nt; lt, σ
2
ln) (10)

The key feature of this simple generative model of dynamic
noise is that the variability of the random component of the noise
(σ2

ln) and the variability of the noise due to the evolution of the
noise process (σ2

d) are explicitly modelled as distinct entities. In
noise dominant sections of the data, σ2

ln and σ2
d in tandem un-

der the structure of the model facilitate the robust tracking of the
evolution of the noise process, by filtering out the random compo-
nent of the noise. In sections of the data where speech dominates,
on the other hand, the noise process is effectively ’hidden’. By
modelling the evolving and randomly varying parts of the noise as
distinct components, the rate of growth of the uncertainty in the
noise level is made independent of the amount of random noise
corruption. The key point is that the overall noise process in the
LMPSD is generally not well modelled as a first order AR process,
because the randomly varying component of the noise is usually

quite significant (σ2
ln � σ2

d). Indeed, we have experimented with
modelling nt directly as a first-order AR process on car noise, and
found that the algorithm was highly unstable.

3.1. Dealing with abrupt changes in noise level

In practice, the underlying noise level in the car environment will
occasionally change dramatically and abruptly (a window is opened
at high speed, the road surface changes), a situation to be dis-
tinguished from a short-duration noise transient or strong random
fluctuation. In such cases even the noise level certainly not a first
order AR process with Gaussian noise, and modelling it strictly
as such can result in loss of track (when a large positive change
in the noise level occurs, for example, the system can get mis-
takenly ’stuck’ in the ’speech dominant’ mode of operation, and
the noise level will not be updated as time proceeds). We handle
abrupt changes in the noise level by introducing a ’re-start’ random
variable, rt, at each time step, with low prior probability of activa-
tion, that facilitates the automatic detection of loss of track, and the
’switching in’ of a re-start model for the noise. The marginal prior
for the noise level at time t, then, is given by a convex combination
of the propagated noise prior, and the re-start noise prior:

p(lt|y0:t−1)

= p(rt = 0)p(lt|y0:t−1, rt = 0) + p(rt = 1)p(lt|rt = 1)

= πrt=0

∑
st

p

πst
p
N(lt; µst

p
, σ2

st
p
)+πrt=1

∑
st

r

πst
r
N(lt; µst

r
, σ2

st
r
)

=
∑
st

l

πst
l
N(lt; µst

l
, σ2

st
l
) (11)

where both the propagated conditional prior of the noise level and
the re-start model are taken as mixtures of Gaussians (the noise
level propagation algorithm will be discussed in detail in the next
section), and the variable st

l represents the mixture index of the
marginal prior for the noise level, which is also a mixture of Gaus-
sians 1.

The utilized re-start model can be context-dependent. For ex-
ample, we have found that propagating a single re-start mode with
mean equal to the output of a min filter on the LMPSD input y
over a short (eg. 0.5 second) window, (an intuitive approach for
recovering the noise level) efficiently and effectively faciliates the
automatic recovery of the noise level when abrupt changes in the
noise level lead to loss of track.

Figure 1 depicts a Bayes Net summarizing the dependencies
that exist between random variables of the DNA model.

4. SPEECH/NOISE INFERENCE

Given the conditional prior of the noise level at a given frequency
for frame t:

p(lt|sl
t, y0:t−1) = N(l; µsl

t|t−1, σ
2
sl

t|t−1) (12)

and the (approximate, linearized) likelihood function:

p(yt|nt, xt) = N(yt; c + [ax an][xt nt]
T , ψ2) (13)

1Note that when re-start functionality is enabled p(lt+1|lt, rt+1 =
0) ≡ p(lt+1|lt) as defined previously.
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Fig. 1. DNA: Generative Model

the marginal likelihood of the noise level is given by:

p(yt|lt, sx
t ) =

∫ ∫
p(yt|nt, xt)p(nt|lt)p(xt|sx

t )dxtdnt

= N(l;
1

an
(y − c − axµsx

t
),

1

a2
n

ψ2 +
a2

x

a2
n

σ2
sx

t
+ σ2

ln)

= N(l; µliklt,sx
t
, σ2

liklt,sx
t
) (14)

The conditional posterior of the noise level is then given by:

p(lt|sl
t, s

x
t , y0:t) = N(l; µsl

t,sx
t |t, σ

2
sl

t,sx
t |t) (15)

where:

σ2
sl

t,sx
t |t =

⎛
⎝ 1

σ2
sl

t|t−1

+
1

σ2
liklt,sx

t

⎞
⎠

−1

(16)

µsl
t,sx

t |t =
(
σ2

sl
t,sx

t |t
)−1

⎛
⎝µsl

t|t−1

σ2
sl

t|t−1

+
µliklt,sx

t

σ2
liklt,sx

t

⎞
⎠ (17)

The update for the conditional posterior mean (mode) of the noise
level is therefore given by a convex combination of prior and data
influences, where the relative weight assigned to each influence
depends on the relative uncertainty (inverse variance) associated
with each information source.

The conditional prior for lt+1 is computed from the condi-
tional posterior of lt via:

p(lt+1|sl
t, s

x
t , y0:t, rt+1 = 0) =∫
p(lt+1|lt, rt+1 = 0)p(lt|, sl

t, s
x
t , y0:t)dlt

= N(lt+1; µsl
t,sx

t |t, σ
2
d + σ2

sl
t,sx

t |t) (18)

If this mode is chosen for propagation, p(lt+1|sp
t+1, y0:t, rt+1 =

0) = p(lt+1|sl
t, s

x
t , y0:t, rt+1 = 0), as will be discussed shortly.

Equations (12-18) collectively define how information about
the noise level is extracted from the data and propagated during
inference. Looking at the expression for σ2

liklt,sx
t

in (14), we can

see that when the speech dominates (ax � an), σ2
liklt,sx

t
will

be very large, and therefore the influence of the observation on
the update of µsl

t,sx
t |t in (17) will be very small. When the noise

dominates, on the other hand, σ2
liklt,sx

t
≈ σ2

ln, and σ2
ln and σ2

d

implement a low-pass filter on the noise, with the noise level as
output.

The number of modes in the noise level posterior at each time
step is equal to the product of the number of modes in the speech
prior, and the number of modes in the noise level prior, and there-
fore exact inference (of the speech or noise) under the model is
generally intractable, as the number of modes in the exact poste-
rior grows exponentially with time. One simple and very general
solution to this problem is to propagate a chosen subset of modes
Kt at each time-step as an approximation of the true posterior dis-
tribution of the noise level:

p(lt+1|y0:t, rt+1 = 0) �∑
{sl

t,sk
t }∈Kt

p(sl
t, s

k
t |y0:t)p(lt+1|sl

t, s
x
t , y0:t, rt+1 = 0)∑

{sl
t,sk

t }∈Kt
p(sl

t, s
x
t |y0:t)

=
∑
sl

t+1

πs
p
t+1

N(lt; µs
p
t+1|t, σ

2
s

p
t+1|t + σ2

d) (19)

In this paper the set Kt is taken as the K most probable modes
under the mode posterior p(sl

t, s
k
t |y0:t).

At each frame an MMSE estimate of the clean speech is com-
puted via:

x̂t =
∑
sx

t ,sl
t

p(sx
t , sl

t|y0:t)

∫
xtp(xt|sx

t , sl
t,y0:t)dxt (20)

Note that both the posterior of the noise level, and the MMSE
estimate of clean speech at each frame are coupled over frequency
by the posterior p(sl

t, s
k
t |y0:t).

5. EXPERIMENTS

5.1. The DNA + Aurora II evaluation framework

Over two hours of challenging in-car noise was recorded with a
microphone attached to the passenger side visor. The data was
recorded over the course of 7 complete car trips with naturally
varying background noise conditions, comprised of both evolving
noise (due to acceleration/deceleration, changing road conditions,
passing cars, rain etc.) and transients (bumps, slamming doors, car
signals etc.). The collected noise data was then partitioned into 10
files (one trip was broken into three files), each between 5 and 20
minutes long, to define a car noise database.

To generate test data, clean speech from Aurora 2 dataset A
(subway) (1001 utterances, consisting of exclusively spoken dig-
its) [5] was artificially embedded into the noise database at various
average SNRs 2, and various settings of the utterance gap vector
(UTV), which defines (cyclicly) the amount of gap between suc-
cessive utterances in seconds (e.g. UTV = [2 0] seconds means
that the utterance gap cycles between 2 and 0 seconds). The UTV
parameter has been defined as such so that the performance of de-
noising systems as a function of utterance length and/or gap can
be analyzed.

2The average SNR here was defined as the square root of the ratio of
the average speech energy level (output by the ITU software [6, 5]) over
all utterances in a given mixed file, and the average noise power, excluding
the utterance gaps from the calculation.
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METHOD WA (%) vs. SNR (dB)
15 10 5 0 -5

DNA1 97.94 97.14 94.78 82.50 81.09
DNA1r 98.15 97.09 94.89 91.43 82.62
RSNE+ 97.24 95.89 93.58 88.01 80.09
ALQN1FF 96.54 90.87 78.39 67.35 49.50
ALQN1FFr 97.85 96.79 94.19 90.63 84.02
NONE 94.34 84.47 69.24 52.25 38.13

Table 1. Word accuracy as a function SNR and applied denoising
algorithm on the new DNA + Aurora II dataset. Here UTV = [4]
seconds.

METHOD WA(%) vs. UTV
UTV = [4] UTV = [2 0] UTV = [0]

DNA1 82.50 88.97 88.39
DNA1r 91.43 90.37 89.78
RSNE+ 88.01 84.79 81.63
ALQN1FFr 90.63 89.78 89.13
NONE 52.25 51.39 51.72

Table 2. Word recognition accuracy as a function of noise observ-
ability and applied denoising algorithm on the new DNA + Aurora
II dataset. SNR = 0 dB.

The collected car noise and scripts for artificially embedding
and then extracting the Aurora II utterances for recognition are
publicly available for download at www.sonsyn.com/DNA. The
overall framework has been designed as an extension of the Aurora
II task, created for the evaluation of adaptive speech denoising al-
gorithms on realistic data, in realistic human-computer interaction
modes.

5.2. Results

Tables 1 and 2 depict word accuracy (WA) results on the DNA +
Aurora II dataset, for various SNRs and UTV = [4], and varying
utterance gap vector UTV at 0 dB, respectively, for the following
front-end speech de-noising systems: 1) DNA1: DNA with one
noise mode propagated at each time step, and re-start detection
disabled. 2) DNA1r: DNA with one noise mode propagated, and
automatic re-start detection enabled (re-start mode defined by a
0.5 second long causal min filter on the input, with prior probabil-
ity 0.001) 3) RSNE+: a) The recursive stochastic noise estimation
algorithm (Deng et. al.) [3] to estimate the noise level (in the
LMPSD), followed by b) the application of Algonquin [1] to es-
timate the speech and noise given the noise level estimate 3. 4)
ALQN1FF: (single gaussian noise prior) Algonquin [1] , with an
evolving, (fixed forgetting factor on the noise posteriors) estimate
of the noise mean. 5) ALQN1FFr: ALQN1FF with the same re-
start functionality as DNA1r added. 6) NONE: no pre-processing
front end. For all of the algorithms, a 128 component diagonal co-
variance GMM speech model trained on clean speech features in
the LMPSD domain (from the Aurora II training set) was used. In
all cases, the first 20 frames of each test file (each 5 to 20 minutes
long) were used to initialize the noise model of the algorithm.

Ignoring the algorithms with reset functionality for a moment,
we can see that DNA1 outperforms both the ALQN1FF and RSNE+

3The post-processing step b) was used rather than Splice [3], since the
Splice algorithm must be trained on corresponding clean and noisy speech
data.

algorithms in all tested scenarios, with the exception of the result
for UTV=[4] and SNR= 0 dB, where RSNE+ significantly out-
performs DNA1. Investigation revealed that both the DNA1 and
ALQN1FF algorithms would occasionally and often, respectively,
loose track of the noise process when very abrupt changes in the
noise level occur, and not always recover. DNA1 is presumably
more robust to loss of track than ALQN1FF because the noise level
prior covariance in DNA1 is dynamic, making DNA more robust
to changing conditions. RSNE+ was found to never loose track: a
positive consequence of this algorithm implementing a fixed for-
getting rate on the noise level likelihoods. The negative conse-
quence of this property that was observed is that this makes the
RSNE+ algorithm prone to significant speech leakage because the
algorithm utilizes a fixed ’window of influence’ to update the noise
estimate. The negative effects of this property of the algorithm be-
come more pronounced when the observability of the noise pro-
cess goes down, as the results in Table 2 demonstrate. Both DNA1
and ALQN1FF implement dynamic forgetting rate algorithms on
the noise level likelihood, and so are robust to speech leakage, but
unfortunately it is the same dynamic mechanism that can cause
them to loose track when abrupt changes in the noise level occur.

Looking now at the results with re-start functionality enabled,
we can see that the performance improvement of the DNA1r and
ALQN1FFr over the DNA1 and ALQN1FF algorithms is substan-
tial. Inspection of the results revealed that the re-start function-
ality had made the DNA1r and ALQN1FFr algorithms robust to
abrupt changes in the noise level, while retaining the desirable
noise tracking properties of DNA1 and ALQN1FF. The perfor-
mance of ALQN1FFr (an algorithm presented for the first time,
here) surprised us. We can see that although DNA1r performs bet-
ter essentially always, ALQN1FFr is always very close behind.
The re-start functionality has almost fully compensated for the fact
that the covariance of the noise prior in ALQN1FF(r) is not dy-
namic, but not fully presumably because min filter-based re-starts
are generally associated with substantial recovery lags. DNA1r on
the other hand avoids having to re-start in most situations, auto-
matically adapting to changing noise conditions by virtue of its
dynamic prior covariance on the noise level.
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