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ABSTRACT

Recent research suggests that modeling coarticulation in speech is

more appropriate at the syllable level. However, due to a number of

additional factors that affect the way syllables are articulated, creat-

ing multiple paths through syllable models might be necessary. Our

previous research on longer-length multi-path models in connected

digit recognition has proved trajectory clustering to be an attractive

approach to deriving multi-path models. In this paper, we extend our

research to large vocabulary continuous speech recognition by deriv-

ing trajectory clusters for 94 very frequent syllables in a 20-hour data

set of Dutch read speech. The resulting clusters are compared with

a knowledge-based classification. The comparison results suggest

that multi-path models for syllables are difficult to build based on

phonetic and linguistic knowledge. When multi-path models based

on trajectory clustering are used, speech recognition performance

improves significantly. Thus, it is concluded that data-driven trajec-

tory clustering is a very effective approach to developing multi-path

models.

1. INTRODUCTION

Coarticulation introduces long-term spectral and temporal depen-

dencies in speech. To model these dependencies in ASR, the use

of longer-length acoustic models, based e.g. on syllables, has been

proposed in [1] – [7]. Syllable models are assumed to be inherently

capable of modeling part of the long-term dependencies in speech.

However, most languages have no more than 40 phonemes, while

they have several thousand syllables. Many infrequent syllables will

have poor coverage in the training data. Therefore, it is unlikely

that a reasonably sized training corpus would contain enough to-

kens to train reliable models for all syllables from scratch. As a

consequence, several authors have proposed mixing syllable models

for frequent syllables with conventional triphone models, or boot-

strapping longer-length models from the sequence of constituent tri-

phones [1] – [7].

However, it is unlikely that long-term coarticulation is the only,

or even the most important, source of variation in speech. Also for

syllable-length models it holds that part of the variation is due to

factors such as the neighboring syllables, the position of the syllable

in a multi-syllabic word, the presence or absence of lexical stress,

and the speaking rate. Moreover, analyzing manual transcriptions of

speech shows that syllables are frequently realized as many different

phoneme sequences. Therefore, it is not a priori evident that acoustic

observation densities of syllable models will model the most impor-

tant sources of variation more accurately than those of triphones - in

particular if the syllable models are bootstrapped from a sequence

of triphones, without adapting the model topology. This may ex-

plain why reports on the performance of syllable models in ASR

have come to contradictory conclusions [5][7].

One way to tackle this problem is building syllable models with

multi-path HMM topologies. However, because of the sheer number

of different syllables in large vocabulary ASR and the large number

of factors affecting their realization, it is not evident that creating

multi-path models on the basis of phonetic or linguistic questions

is possible. In addition, since syllables tend to appear in relatively

limited phonetic and linguistic contexts, good classification criteria

for some syllables may not be suitable for other syllables. Thus, a

data-driven technique might be more appropriate than a knowledge-

based approach.

In our previous work [8][9], we developed a data-driven method,

which we named speech trajectory clustering, to build multi-path

model topologies, and successfully applied it to longer-length acous-

tic models (linguistics-based Head–Body–Tail models [10]) for con-

nected digits recognition. In this approach, speech observations are

regarded as continuous trajectories along time in acoustic feature

space, and clustered based on mixtures of regressions of these trajec-

tories [11]. Each trajectory cluster is modeled as a prototype polyno-

mial function with some variability around it. The variability within

the clusters is described in terms of a mixture of Gaussians. The

EM algorithm is employed to train the cluster model in a maximum

likelihood manner. Using the results of trajectory clustering, multi-

path models can be trained based on the training tokens in different

trajectory clusters.

In this paper, we investigate two aspects of multi-path sylla-

ble models for large vocabulary ASR. First, we examine whether

bottom-up clusters of syllable tokens correspond to classes that can

be interpreted in terms of linguistic features. Second, we investi-

gate whether multi-path syllable models improve recognition perfor-

mance as compared to triphone models and a mixed-model system

based on single-path syllable models. In doing so, we extend pre-

vious work [6][7] in which we combined syllable models for the 94

most frequent syllables with triphone models. To achieve the goals

set for this paper, we first cluster the training tokens of the 94 most

frequent syllables by means of the trajectory clustering method, and

interpret the resulting clusters in terms of a number of linguistic fac-

tors that are likely to have an impact on pronunciation variation. We

focus on phonetic and linguistic factors such as syllable duration, the

part-of-speech (POS) tag of the word containing the syllable, lexical

stress, and the difference between mono- and polysyllabic words.

Using the resulting clusters, we build and test multi-path models for

the 94 syllables. Since both our earlier work [8][9] and the present
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study have shown that trajectory clustering always detects the gen-

der distinction as the first factor, we limit our clustering and speech

recognition experiments to female speech only. We compare the re-

sults of the multi-path mixed-model large vocabulary ASR system

with the performance of a triphone system and a single-path mixed-

model system.

The data used in the experiments and its linguistic annotation

are introduced in Sections 2 and 3. The results from our cluster-

ing and speech recognition experiments are presented and discussed

in Sections 4 and 5. In Section 6, we summarize the most impor-

tant findings and draw conclusions about the implications for future

work.

2. SPEECH MATERIAL

The speech material was taken from the Spoken Dutch Corpus (Cor-

pus Gesproken Nederlands; CGN) [12], which - among other things -

contains manually verified orthographic transcriptions and POS tags.

For this study we used speech from 166 females reading books for

the Dutch library for the blind. The training, development and test

sets comprised non-overlapping fragments of all 166 speakers. De-

tails of the composition of the three sets are given in Table 1.

Table 1. Main statistics of the CGN female speech data used for

analysis.

Statistic Training Test Development

Word tokens 215,810 12,327 11,822

Speakers 166 166 166

hh:mm:ss 20:15:44 01:08:54 01:06:21

Feature extraction of the speech material was carried out at a

frame rate of 10 ms using a 25-ms Hamming window. A pre-emphasis

factor of 0.97 was employed. 12 Mel Frequency Cepstral Coeffi-

cients (MFCCs) and log-energy with corresponding first and sec-

ond order time derivatives were calculated, for a total of 39 features.

Channel normalization was applied using cepstral mean normaliza-

tion over complete recordings, which were chunked to sentence-

length entities for the purpose of further processing. Feature ex-

traction was performed using HTK.

3. LINGUISTIC INFORMATION

The set of 94 syllables from [6][7] was analyzed with respect to the

following information:

• Syllable duration

• POS tag

• Stress

• Monosyllabicity

Syllable durations were computed by means of forced alignment.

The canonical transcriptions of words were time-aligned to the speech

signal using a set of triphone models trained on the 5-hour subset of

the speech material used in [6][7]. The syllable durations were re-

trieved by mapping the triphones to the corresponding syllables. One

half of the syllable realizations was defined as long and the other half

short. This “definition” of long and short syllables has proved suc-

cessful in our previous work on connected digits [8][9].

The POS tagging was used to determine if the words in our data

set were function or content words, and to analyze how the sylla-

bles of interest related to them. The group of function words was

defined to consist of articles, adverbs, conjunctions, interjections,

numerals, prepositions and pronouns. The distinction between func-

tion and content words is related, but certainly not identical, to the

distinction between accented and non-accented syllables. For exam-

ple, an adverb such as “veel” (‘very’) can occur both with and with-

out accent. Yet, function words tend to be unaccented in continuous

speech, while content words are more likely to be accented.

The feature “stress” relates to the presence of a stress mark on

the syllable in the pronunciation lexicon. Except for a small num-

ber of monosyllabic function words [13], all words in the lexicon

contain one stressed syllable. Monosyllabicity marks those syllable

tokens which occur as a monosyllabic word. Most syllables can oc-

cur both as a part of a polysyllabic word and as a monosyllabic word

of their own. Canonical pronunciations comprising syllabification

and word stress information were retrieved from the CGN lexicon

(in-house version of 2 May 2005) and CELEX [14]. The CGN lex-

icon is built by manually verifying the pronunciation information

retrieved from various existing lexical resources. A single canonical

pronunciation was used per lexeme, with the CGN phone set reduced

to 37 phones. The information in our lexicon was used to determine

if the syllables of interest carried lexical stress or corresponded to

monosyllabic words.

4. EXPERIMENTAL RESULTS

In the experiment, we split the acoustic observations of each sylla-

ble into two groups using trajectory clustering [8], and compared the

results with the knowledge-based classification based on the sylla-

ble duration, POS tag, stress and the monosyllabicity criteria. The

resulting two-way classifications were analyzed visually, by exam-

ining a set of graphical representations with four-block grey scale

pictures for each syllable of interest. In addition, the results were

analyzed numerically, by checking whether the proportions of cases

in the diagonal cells were comparable. Figure 1 illustrates the graph-

ical representations of the results for four example syllable models:

/t ei t/, /z o/, /l @/ and /h a r/. The proportion of tokens shared by a

linguistic category (column) and a trajectory cluster (row) is depicted

as the degree of darkness of the cells, as indicated in the rightmost

column. Essentially, a conspicuously dark diagonal implies a close

correspondence between the trajectory clustering and the linguistic

information under examination.

4.1. Trajectory Clustering

In Figure 1, the syllable models /t ei t/, /z o/, /l @/ and /h a r/ demon-

strate four types of correspondence between the results of the trajec-

tory clustering and the linguistic information. For about 5% of the

syllables, exemplified by /t ei t/, the results of the clustering corre-

sponded with both the duration and POS. About 15% of the syllables

(for example /z o/) showed an effect of duration, and another 15% of

the syllables (e.g. /l @/) showed an effect of the POS. The syllable

model /h a r/ illustrates the most typical pattern: about 65% of the

syllables did not correspond to any of the four factors examined. In

addition, for the factors stress and monosyllabicity, there was hardly

a syllable that would have shown a systematic connection with the
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Fig. 1. The relationship of the trajectory clustering with respect to

syllable duration, POS tag, stress and monosyllabicity in the case of

the syllable models /t ei t/, /z o/, /l @/ and /h a r/. C1 = cluster 1,

C2 = cluster 2. Duration: L = long, S = short. POS tag: C = con-

tent word, F = function word. Stress: S = stressed, U = unstressed.

Mono: M = monosyllabic, P = polysyllabic.

results of trajectory clustering. These results indicate that it might be

difficult to build multi-path models based on phonetic and linguistic

knowledge. The data-driven trajectory clustering can automatically

find the most important variant for each syllable, and effectively de-

fine an appropriate multi-path model topology.

4.2. Speech Recognition

Based on the results of the trajectory clustering, we built multi-

path models for 94 frequent syllables. We designed experiments to

test whether a mixed-model system with multi-path syllable models

would outperform 1) a conventional triphone system or 2) a mixed-

model system with a single path for each syllable model.

In building the triphone recognizer and the single-path mixed-

model recognizer, we used the procedure described in [6]. To sum-

marize, a standard procedure with decision tree state tying was used

to train the triphone recognizer. The triphones were created based on

the canonical transcriptions in the lexicon. For each HMM state, 8

Gaussian mixture components were trained. The 94 context-independent

syllable models of the mixed-model recognizer were initialized with

the 8-Gaussian triphone models corresponding to the constituent (canon-

ical) phonemes of the syllables. The mixture of models underwent

four passes of Baum-Welch reestimation.

To build the multi-path mixed-model recognizer, we clustered

the training tokens of each of the 94 most frequent syllables into two

and three trajectory clusters. Based on the results of the trajectory

clustering, we built 2-path and 3-path HMMs for each syllable. The

multi-path syllable models were initialized with the same 8-Gaussian

single-path syllable models and reestimated with the training tokens

in the clusters obtained through trajectory clustering. Since we did

not find a systematic connection between trajectory clusters and the

long or short duration of syllable tokens, we decided to keep the

number of states in the parallel paths equal to the sum of the states

in the constituent triphone models. Word entrance penalty and lan-

guage model scaling factor were optimized on the independent de-

velopment test set (cf. Table 1).

In order to study possible improvements due to changes in acous-

tic modeling only, without the risk of language modeling issues mask-

ing the effects, out-of vocabulary words were not allowed in the

task. In effect, the recognition lexicon and word-level bigram net-

work were built using all orthographic words in the training and test

sets containing both female and male speech. The vocabulary con-

sisted of about 29,700 words, and the test set perplexity, computed

on a per-sentence basis using HTK, was 92. Due to the special na-

ture of the corpus, which consists of chapters from novels, a strict

separation between training and test sets would have resulted in a

test set perplexity of about 350.

Table 2. Speech recognition results for the triphone recognizer,

the single-path mixed-model recognizer and the multi-path mixed-

model recognizers.

Recognizer Type Word Error Rate

Triphone 9.15% ± 0.5%
1-path mixed-model 9.41% ± 0.5%
2-path mixed-model 8.70% ± 0.5%
3-path mixed-model 8.67% ± 0.5%

Table 2 illustrates the recognition results. As one can see, the

recognition performance for the single-path mixed-model recognizer

is slightly, but not significantly, worse than for the triphone recog-

nizer. This replicates the results in [7], for models trained on a sub-

stantially lager corpus. The performance of the 2-path multi-path

mixed-model recognizer is significantly better than the single-path

mixed-model recognizer, and it substantially outperforms the tri-

phone recognizer. The results indicate that, although syllable mod-

els are capable of modeling long-term dependencies in ASR, there

are other sources of variation that are more important to model. By

employing multi-path models based on data-driven trajectory clus-

tering, the most important variation is accounted for in the parallel

paths and this leads to improved performance.

From Table 2, it can also be seen that the recognition perfor-

mance of the 3-path mixed-model recognizer is almost identical to

that of the 2-path recognizer. Most probably, this is caused by the

undertraining of at least some of the individual HMM paths. From

analyzing the results of the 3-way trajectory clustering, it appears

that the number of training tokens for some HMM paths is less than

100. Using such a limited number of training tokens does not allow

the accurate training of the observation densities of these paths.

5. DISCUSSION

Our experiments suggest that syllable models with a topology equal

to a sequence of triphone models do not capture much more long-

term coarticulation information than the sequence of triphone mod-

els per se. Comparisons of the observation densities in the syllable

models with the densities in the corresponding states of the triphone

models, which were used for bootstrapping, show that Baum-Welch

reestimation only has a small effect [7]. The fact that 2-path and

3-path syllable models do yield a small but significant improvement

in performance suggests that the gain in modeling power originates
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from separating different realizations of syllable tokens. The finding

that the 3-path models did not outperform their 2-path counterparts,

despite an increase in the number of model parameters, is probably

due to undertraining.

The most compelling explanation for the finding that multi-path

models only yield a small performance gain is the fact that all par-

allel paths had topologies identical to the topology of the sequence

of constituent triphones. In the experiments reported in this paper,

we were not able to find appropriate techniques for defining different

topologies for parallel paths. This is mainly due to the failure to find

a connection between the clusters and linguistic or phonetic features

that might provide clues for adapting the topologies. Contrary to our

expectations, we did not find a clear connection between trajectory

clusters and syllable duration. We are presently investigating two

possible explanations for this lack of correspondence. One is related

to the time normalization that was used in the trajectory clustering

procedure [9]. The other is related to the lack of time normalization

of the syllable tokens in the contingency matrix. It may well be that a

much clearer connection between clusters and duration will emerge

if another strategy is used for dealing with trajectories of different

length in the clustering procedure, or when syllable tokens are nor-

malized for external factors such as overall speech rate. In that case,

parallel paths with different numbers of states could be trained, most

likely leading to a more substantial performance gain.

Another method that can be explored to define different topolo-

gies for parallel paths is analyzing the manual phonetic transcrip-

tions that are available in the CGN corpus for a part of the speech

material. We intend to investigate whether tokens with different tran-

scriptions end up in different clusters, and if the transcriptions could

then be used as a basis for defining topologies.

So far, our trajectory clustering technique was designed so that,

in each step, the cluster with the highest mixture weight is split. This

can lead to clusters with a relatively small number of members, too

few to allow for reliable reestimation of the observation densities.

We intend to adapt the clustering procedure in order to avoid clusters

which are too small for our purposes. This should help in training

effective models with more than two parallel paths.

6. CONCLUSIONS

In this paper, we addressed the issue of parallel trajectory topologies

for syllable models. We showed that the results of bottom-up trajec-

tory clustering do not correspond to any of the linguistic or phonetic

features that we tested (duration, stress, content/function word, and

mono- or polysyllabic word). This will make it very difficult, if not

impossible, to design context-dependent syllable models on the basis

of decision trees with linguistic and phonetic questions.

A single-path mixed-model recognizer, combining syllable and

triphone models, performed slightly worse than a straightforward

triphone system. However, a mixed-model system with multi-path

syllable models did outperform the triphone system, despite the fact

that all parallel paths had a topology identical to the topology of the

sequence of constituent triphones. This shows that it is worthwhile

to try and develop techniques for designing different topologies for

the paths in the multi-path models. Research is under way to develop

procedures for designing different topologies in the absence of clear

relations to linguistic or phonetic features.
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