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ABSTRACT

In this paper, we present a new training algorithm, gradient

boosting learning, for Gaussian mixture density (GMD) based

acoustic models. This algorithm is based on a function 

approximation scheme from the perspective of optimization in 

function space rather than parameter space, i.e., stage-wise

additive expansions of GMDs are used to search for optimal

models instead of gradient descent optimization of model 

parameters. In the proposed approach, GMD starts from a single

Gaussian and is built up by sequentially adding new 

components. Each new component is globally selected to 

produce optimal gain in the objective function. MLE and MMI 

are unified under the H-criterion, which is optimized by the 

extended BW (EBW) algorithm. A partial extended EM 

algorithm is developed for stage-wise optimization of new 

components. Experimental results on WSJ task demonstrate that 

the new algorithm leads to improved model quality and

recognition performance.

1. INTRODUCTION 

Maximum likelihood estimation (MLE) is commonly used for

GMD based acoustic models where the estimators can be 

obtained by the expectation maximization (EM) algorithm. MLE 

assumes that the training data is distributed as described by the 

model and the size of training samples is large. However, in 

speech recognition applications, neither of these assumptions

holds. Previous works have shown that discriminative training

schemes such as maximum mutual information (MMI) [1] and

minimum classification error (MCE) [2] can provide better 

performance than MLE, where information of both correct and

competing classes are used to minimize recognition error rate. It 

was also shown that further improvements can be made by using 

the H-criterion [3], which is a generalized form of ML and MMI, 

or I-smoothing [1].

Two important issues in EM or extended EM algorithm are

local optima and model complexity, which depend on the 

initialization of mixture components. These problems are even 

more acute in discriminative training when MLE models are 

used for initialization, because the discriminative objective 

function is a different criterion. In MLE, randomized model 

initialization or model selection methods are often used as

solutions to these problems. But for discriminative training,

these methods can not be directly applied and MLE is most 

commonly used for model initialization. Normandin [4]

proposed an optimal splitting algorithm for GMDs with MMI 

criterion. But this algorithm was developed in a model 

complexity perspective and local optima were not of concern.

Chou and Li [5] proposed a method of integrating AdaBoost in 

MCE training for text classifiers, where AdaBoost is used to find

meaningful initializers beyond local optima. Although AdaBoost

has been reported in boosting HMM speech recognizers [6], its

use for initialization of discriminative training is not

straightforward.
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The key problem associated with local optima and model

complexity is the lack of schemes which can jointly optimize

model structure and parameters. In this paper, we present the

general framework of gradient boosting learning to address 

above problems. The theory of gradient boosting learning was

first introduced in statistics literature. Friedman developed a 

general gradient-descent boosting paradigm for additive 

expansions of functions based on any fitting criterion [7]. This 

paradigm is extended to estimation of GMD based HMMs in our

algorithm where GMDs are additive in nature. In addition, a 

partial extended EM algorithm for optimal component search is 

developed based on the H-criterion. In this new framework, 

GMDs are recursively constructed in a greedy manner— an 

optimal new component is located and inserted to the mixture 

model. In comparison with conventional algorithms, it offers a 

mechanism of dynamically allocating new components outside

the local optimum regions. Conceptually, this algorithm differs 

from optimal splitting algorithm in that it uses an optimal

insertion step instead of splitting, where the new component is 

found by a global search to avoid local optima. Note that the 

optimal splitting in [4] does not guarantee global optimum.

The organization of the rest of the paper is as follows. In 

section 2 we give general background to gradient boosting 

learning and its application to ML estimation of GMD based 

HMMs. In section 3, we apply gradient boosting to HMMs

based on the H-criterion. In section 4 some key implementation 

issues are discussed. Experimental results are given in section 5, 

and conclusions are made in section 6. 

2. GRADIENT BOOSTING LEARNING 

In conventional parametric methods for estimation of function 

;xF , model parameters are estimated by optimizing some

specified objective function ;xFL .  For most ;xF  and 
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, closed form solution is difficult to find and 

numerical optimization methods are used. When steepest-decent 

method is used, the solution can be expressed as a sum of 

subsequent steps starting from an initial guess 0, i.e., 

, where  is the incremental step 

of size

migiii ,..,1,
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i taken at the direction gi. In contrast to conventional 

methods, gradient boosting learning targets the function 

approximation problem from the perspective of numerical

optimization in function space, rather than parameter space. The

solutions seeking are “additive” expansions of the form
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where h is a basis function characterized by parameters m

, which is usually chosen as the best fit of the gradient in the

function space at stage m, and m is the step size.  Given N

training observations X , the general paradigm of

gradient boosting contains the following steps [7]:

Algorithm 1: Gradient Boost 

1. Initialize F .

2. For m = 1 to M do: 

3.
.,...,1, Nigi

4.        Fit basis function  to {gi}.

5. .; mim xh

6. .;; mm xxF

7. End For

The analogy of gradient boosting to steepest-descent gives 

insight to estimation of GMDs in the model space instead of

parameter space. Our goal is to estimate a probability density

function  which optimizes some specified objective

function  with the solution in the form of mixture of 

Gaussians  to obtain largest gain of

;x

;x

x
k

i 1

;xfL

in a steepest-descent manner.

Special properties associated with GMD estimation present

difficulties in direct application of gradient boosting. First, the 

sequential learning equation in line 6 needs to be constrained by

being a proper GMD density function.  This can be assured by

defining the new GMD to be 

101 mm
     (2) 

Second, fitting the steepest-descent direction in line 4 is 

sensitive to low valued probabilities. For example, in the case of 

MLE, the gradient of log-likelihood function is
;

f

. This implies fitting a bell-shaped 

Gaussian kernel to the reciprocals of current probabilities, which

could approach infinity when  is small. Third, steepest-

descent methods have known problems of local optima. To 

overcome these problems, we developed an alternative searching

procedure to obtain the basis function in line 4. This scheme

consists of candidate generation, re-estimation and selection. In 

our candidate generation design, all candidates are obtained by

randomly splitting the existing Gaussian components, which will

maintain appropriate coverage of the model space. Each 

candidate is re-estimated using local data and its contribution to 

the improvement in the objective function is measured. The one

which contributes the most to the objective function is chosen as 

the new component. Within this scheme, the entire model space 

is covered by the globally generated candidates, and hence local 

optima can be alleviated. More details on new component

allocation will be discussed in section 4.

Model complexity is one important issue in GMD

estimation. The best value for number of components M can be 

determined by model selection methods, such as BIC, cross-

validation, etc. By considering the GMD-related issues and 

incorporating model selection criterion, the gradient boosting

algorithm for S-class GMDs  is formulated as

following:

Sff ,...,1

Algorithm 2: GMD Gradient Boost 

1. Initialize
0,0, ;; sss xNxf , s = 1,…,S , set m = 1.

2. For s = 1 to S do: 

3.       Find a basis Gaussian 
msxN ,

~
;  . 

4.
,;;1maxarg,

1

1,
,

,,

N

i

iimsmsms xNxfL

~     use
msx ,N ;  found in line 3 for initialization. 

5. .;;1; ,,1,,, msmsmsmsms xNxfxf

6.      Update fs,m using EM [optional].

7. End For

8. Set m = m+1.

9. If a stopping criterion is met then exit, 

else go to line 2. 

In line 4, as a modification of line 5 in Algorithm 1, the 

parameters s,m and s,m are jointly optimized, which is an 

inherent property of EM algorithms. In this case the new

component found in line 3 is used for initialization. Also note

that the re-estimation step in line 6 is not in Algorithm 1. The 

step is added because in GMD estimation, it is often desirable to 

tune the model parameters after a structural change caused by

insertion of a new component.

There is no closed-form solution for the optimization in line 

4. However, it can be viewed as a sequential learning of two 

component models, with the component ;1 xfm
 fixed. A 

partial EM algorithm was proposed in [8] for ML estimation of 

GMDs, which can be easily extended to the ML estimation of

HMMs. The update equations for the mth component of GMD at 

state s are given as following: 
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Normally, a global search as required in line 3 is

computationally prohibitive. Since only one component needs to

be re-estimated in each iteration, partial EM requires much less

computation than full EM. The computational efficiency

demonstrated by partial EM is critical in developing a global 

searching heuristic [8].

3. GRADIENT BOOSTING FOR H-CRITERION

Given R training utterances {X1, X2,,…, XR} with corresponding 

transcriptions wr, each consisting of Nr feature vectors, r = 

1,…,R, the MMI discriminative training criteria is defined by

the following expression: 
R

r

Mw
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r

wpwXp

wpwXp
L
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log

                                  (7) 

where Mr denotes the set of word sequences considered for 

discrimination in utterance r. The MMI objective function can

be generalized to the H-criterion [3]:
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As can be seen that both MLE and MMI are special cases of H–

criterion corresponding to h = 0 and h = 1 respectively.

Maximizing (8) leads to the extended BW algorithm which uses

following update equations for mean and variance in each

particular dimension of the mth Gaussian component for state s

(assuming diagonal covariance matrices) [9]:
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The extended partial BW update equations are similar to those 

used in partial EM (equations (5) and (6)) and are omitted here.

A key issue in using update equations (9) and (10) as well 

as their counterparts in extended partial BW is the selection of

proper D and h. Larger D means slow convergence but small D

may result in negative variance. If h is large then more

discrimination is considered; when h is small, more confusion is 

allowed. In [10], D was set at 0 and superior performance was

observed over conventional MMI by choosing appropriate 

values of h.

4. APPROXIMATE GRADIENT BOOSTING FOR 

HMM

There are two reasons that make gradient boosting to 

discriminative training complex. First, searching for the new

component requires evaluating the candidates using entire set of

observation data, including correct and competing ones. Even in

small vocabulary task, gathering of the required statistics is 

computationally expensive. Second, step-wise convergence 

constant D and regularizing factor h need to be determined to

achieve fast convergence and prevent over-training. 

In order to reduce computation complexity, 1-best

approximation is used in the denominator of the H-criterion. The 

computation of sufficient statistics in each state is further

reduced by Viterbi approximation. Our gradient boosting

discriminative training algorithm consists of the following steps:

1. Train single Gaussian HMMs and perform recognition 

on the training set. Obtain the correct set As and 

confusion set Bs for each tied state s using Viterbi

segmentation.

2. For each individual state, iteratively insert one optimal

component which provides the largest increase in the 

H-criterion. Halt insertion if stopping criterion is met.

3. Re-estimate HMMs after GMDs in all tied states  have 

been filled.

In step 1, Viterbi approximation is used for state time-

alignment. The sets As and Bs contain indices of observations

that are labeled and recognized as state s respectively. The H-

criterion from section 3 becomes

ss Br

r

Ar

rs SXphSXpF |log|log*                   (11) 

Note that this is in the same form as the objective function in 

[10], but the re-estimation formulas are modified to be as

following:
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The crucial part in step 2 is allocating optimal new component

for insertion into mixture. This is achieved by optimal selection 

among a set of pre-generated candidates. For each phone state, 

in order to generate candidates for the (k+1)th component, the 

training data set is quantized into k disjoint sets: 

. Then for each setQ , a pair of 

candidates is generated by randomly splitting Q  into two

disjoint subsets. The means and variances of data sample in 

these two sets are chosen as candidate parameters, and the initial 

weight for each candidate component is set to be half the weight 

of
iN |

i i

. If more candidates are needed from this component,

then the random splitting process is carried out repeatedly to 

obtain the required number of candidates. Assuming m

candidates are generated from each existing component, then km

candidates are generated for the new component. Each candidate

is re-estimated by extended partial EM. In order to keep 

computation cost low as well as to utilize the strength of

exploring local discriminative pattern, the maximum

approximation is applied in re-estimation and evaluation of 

candidates, i.e., only those correct and confusion data which are

quantized to Q  are used for generating candidates from Q .

(13)
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Another important issue is the choice of the parameters h

and D in the re-estimation equations. Appropriate values need to 

be chosen to avoid negative Gaussian variance and slow

convergence. The strategies for adjusting the value of D have 

been widely explored. In [1], it was found that a per-Gaussian

level D resulted in improved performance. Since gradient 

boosting is a stepwise greedy learning of discriminative models,

it is natural to employ a per-Gaussian level heuristic to adjust

both parameters. To be concise, we only list our heuristics for 

convergence control through h, which consists of the following

steps:

1. For state s, initialize hs by Errhssh 1,min max,
,

where hs,max is the maximum constant that guarantees a 

variance floor in state s, Err is the estimator of the 

state error rate in recognition, and 0< <1 is a

shrinkage variable. 

2. Run greedy search for new component. If no valid

component is found, set hs = hs and continue with a 

new search.

3. Stop if the increase in the value of the objective

function (11) is smaller than a given threshold, or if a

pre-defined number of consecutive failures of 

component search is reached. 

5. EXPERIMENTS

The Gradient Boosting (GB) algorithm was evaluated on the 

WSJ 20K Nov 92 task. The standard training data set 

(WSJ0+WSJ1) including speech of 284 speakers were used. 

Speech feature analysis was made at a 10msec frame rate with a

25msec window-size. Speech feature components included 13 

MFCCs and their first and second derivatives. Cepstral means

were removed for every utterance. The baseline acoustic model

was trained using HTK with a fixed number of Gaussians in

each mixture.

The GB based acoustic models were trained as the

following. First, single Gaussian models were trained using 

conventional EM and were tied by phonetic decision trees with 

HTK [11]. Second, in order to generate correct training set As

and confusion set Bs for each phone states, Viterbi forced 

alignment and recognition using the trained single Gaussian 

models were performed to segment training data into 

corresponding phone states. Third, GB models were trained for 

each tied state using segmented data sets, As and Bs, where the 

maximum allowed number of Gaussians for each phone state 

was 32. As the last step, an ordinary embedded EM was applied 

to all the transition probabilities of HMMs for a final

optimization.

For the WSJ task, standard trigram language model

provided by LDC was used, including 19,982 unigrams,

3,518,595 bigrams, and 3,153,527 trigrams. Only within-word

triphone acoustic model was tested, even though GB is equally

applicable to cross-word triphone model. One-pass time-

synchronous beam search was used for decoding speech with 

conservative pruning thresholds optimized for testing.

GB models were trained under the H-criterion and the 

parameters h and D were tuned at a per-Gaussian level. 

Experimental results from 333 sentences of the si_et_20

evaluation set are listed in Table 1. Word accuracy achieved 

under the same number of mixture components per mixture

density was compared for baseline (MLE) and GB derived

models (for GB models, this number is an average over all 

states). Over the range of studied model complexity, GB models

consistently gave lower word error rate than EM trained models,

confirming the superior performance of GB training over EM.
Mix. size 10 12 15 16 17

Baseline 88.66 88.59 88.84 89.31 89.33

GB 88.92 89.03 89.51 89.58 89.70

Table 1.  Word accuracy of conventional EM and GB 

6. CONCLUSION 

In this paper, we proposed a new algorithm, Gradient Boosting,

for discriminative acoustic model training. We described an 

effective greedy function learning algorithm under the H-

criterion, and extended partial EM serves as an efficient way to 

explore local discriminative patterns and overcome local optima

without much extra computation cost. Experiments conducted on

WSJ 20K Nov 92 task showed that the proposed algorithm

consistently outperformed the conventional EM. In future study,

we will address two implementation related issues: one is to 

minimize the use of approximations made in section 4, the other

is to improve the efficiency in identifying local confusions for

new component allocation. 
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