
STATE DIVERGENCE-BASED DETERMINATION OF THE NUMBER OF GAUSSIAN
COMPONENTS OF EACH STATE IN HMM

Xiao-Bing Li Ren-Hua Wang

Department of Electronic Engineering and Information Science
University of Science and Technology of China, Hefei, Anhui, 230027, China

lixiaobing@ustc.edu, rhw@ustc.edu.cn

ABSTRACT

A new, state divergence-based algorithm is proposed in this
paper to determine the number of Gaussian components of
each state in continuous density HMM by maximizing the
between-state divergence. The unscented transform based ap-
proximation of the Kullback-Leibler divergence is adopted to
measure the between-state model divergence to direct the de-
termination. Due to the advantage of being more discrimina-
tive, the proposed approach can lead to more compact HMM.
Our experimental evaluation shows that compared with the
conventional Bayesian Information Criterion based determi-
nation (which is better than the uniform determination), the
presented method can reduce the total number of Gaussian
components to about 63%, while it results in almost negligi-
ble degradation of the recognition performance.

1. INTRODUCTION

Modelling the state by a mixture of Gaussian components is
a common technique in current state-of-the-art, continuous
density HMM-based speech recognition systems. In order to
estimate the model parameters using the Expectation Maxi-
mization (EM) algorithm [1], the number of Gaussian com-
ponents for each state should be specified firstly. In general,
two methods are used to determine the number of Gaussian
components: (1) same number of components is used across
each state; (2) for each state, the number of components is de-
termined proportionally to the corresponding state occupancy.

Though with an acceptable recognition performance, the
models resulted from the two determination approaches are
suboptimal and are usually at a price of large number of re-
dundant Gaussian components. In other words, large storage
and computation resources are required. Furthermore differ-
ent states depend on different phonetic context and may con-
tribute unequally to the classifier’s classification error, as has
been reported in [2], so the two approaches are also unfair to
the states (i.e. the ”non-aggressive” states in [2]) that need
more Gaussian components for their more contribution.

Therefore, many alternative determination approaches to
assigning the number of components in Gaussian mixture mod-
els have been proposed, e.g., Bayesian Information Criterion
(BIC) [3] or Minimum Description Length (MDL) [4] based
determination [5][6][7], state quality measurement [2], ag-
glomerative clustering based determination [8], and leave-one-
out likelihood based method [9]. Among them, BIC-based
determination has been reported to give a much better perfor-
mance than other methods.

However, in the BIC-based approach, the determination
for each state is given separately, and the competitive rela-
tionship between states is not considered. In this paper, we
propose a new algorithm to determine the number of compo-
nents of each state. The algorithm gives the determination by
maximizing between-state divergence given the total number
of Gaussian components. As the competitive relationship be-
tween states is considered, this approach has the advantage of
more discrimination.

In our approach, the symmetric Kullback-Leibler diver-
gence (KLD) [10], an information theoretic measure of the
distortion (distance) between two probability density func-
tions, is adopted with its unscented transform [11] based ap-
proximation [12] to measure the between-state model diver-
gence. The Gaussian components are allocated successively
to a state where maximum increment of the between-state
model divergence is obtained. Therefore, we can determine
the number of Gaussian components of each state at any oper-
ating point (measured by the total number of Gaussians used)
while the between-state model divergence is maximized.

The rest of the paper is organized as follows. In Section
2, the Bayesian Information Criterion and its corresponding
determination are briefly reviewed. An overview of Kullback-
Leibler divergence and the unscented transform based approx-
imation are given in Section 3. Section 4 proposes the algo-
rithms for generating the competitive states and the divergence-
based determination of the number of Gaussian components.
Database, experimental setups and results are presented in
Section 5. Conclusion is given in Section 6.
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2. BAYESIAN INFORMATION CRITERION BASED
DETERMINATION

Well known as a model selection criterion in the statistics lit-
erature, Bayesian Information Criterion [3], is a likelihood
criterion penalized by the number of parameters in the model.
It is defined as:

BIC(θ) = log P (X |θ) − λ

2
#(θ)log N (1)

where X = {xi, i = 1, · · · , N} is the data set, θ is the model,
log P (X |θ) is the log likelihood of X given θ, and #(θ) de-
notes the number of parameters in θ. The parameter λ is the
penalty weight.

Fig. 1 plots the BIC values against the number of Gaus-
sian components. By increasing the number of model param-
eters, the BIC value first increases then declines. The number
of Gaussian components of a state S is specified at the point
(In Fig. 1, it is 20.) with the maximum BIC value.
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Fig. 1. Bayesian Information Criterion value vs. number of
Gaussian components

3. KULLBACK-LEIBLER DIVERGENCE AND
UNSCENTED TRANSFORM BASED

APPROXIMATION

The Kullback-Leibler divergence [10], is a distortion measure
for measuring (dis)similarity between two given probability
density functions, f and g. It is defined as:

d(f‖g) =
∫

f(x)log
f(x)
g(x)

dx (2)

In classification and discrimination problems, a symmetrized
version of two asymmetric KLDs, also known as the Jeffrey
divergence, is widely used.

J(f, g) = d(f‖g) + d(g‖f) (3)

There is no closed-form analytical expression for the KLD
between two multivariate Gaussian mixture models. It can be

approximated by Monte-Carlo simulation techniques as:

d(f‖g) ≈ 1
N

N∑
n=1

log
f(xn)
g(xn)

(4)

where x1, · · · , xN are randomly sampled from f(x). How-
ever the computation burden is somewhat heavy. An effi-
cient, unscented transform [11] based approximation, which
can significantly decrease the computation complexity, was
presented in [12]. For two D-dimensional Gaussian mixture
distributions:

f =
Mf∑

m=1

cf,mN(µf,m, Σf,m)

g =
Mg∑

m=1

cg,mN(µg,m, Σg,m)

by using only a small number of points, which are determin-
isticly sampled from f(x), the KLD between them can be
approximated as:

d(f‖g) ≈ 1
2D

Mf∑
m=1

cf,m

2D∑
d=1

log g(xm,d) (5)

where:

xm,d = µf,m + (
√

DΣf,m)d d = 1, · · · , D

xm,d+D = µf,m − (
√

DΣf,m)d d = 1, · · · , D

and (
√

Σ)d refers to the d-th column of the matrix square root
of Σ.

4. STATE DIVERGENCE-BASED DETERMINATION
OF THE NUMBER OF GAUSSIAN COMPONENTS

Given a HMM Λ with NS states (S1, · · · , SNS ), we define
the between-state model divergence as:

D(Λ) =
1
2

NS∑
i=1

D(Si) (6)

where

D(Si) =
NS∑

j=1, j �=i

J(Si, Sj) (7)

is the total divergence between state Si and all other states.
Our divergence-based determination is thus to obtain a model
with a maximum between-state model divergence, given the
total number of parameters.

However, a HMM usually has a large number of states
(i.e., with a large NS). The computation of equation (7) for
all the states is somewhat prohibitive. We therefore resort to
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a computationally tractable, approximate solution by calcu-
lating the divergence between the state and its corresponding
top Nc (Nc � NS) competitive states. Then equation (7) can
be rewritten as:

D(Si) ≈
Nc∑
j=1

J(Si, Sj) (8)

Therefore, how to get the top Nc competitive states for
each state and how to efficiently allocate Gaussian compo-
nents are the two key points of our state divergence-based
determination. In the following we’ll describe them respec-
tively.

4.1. Competitive States

In our study, a data-driven method was used to obtain the cor-
responding top Nc competitive states of each state by the fol-
lowing procedure:

1. Use a well-trained model to align the training data (or a
randomly selected subset of the full training set) to the
frame-level with the correct transcription;

2. For each state, find its top Nf competitive states for
each frame aligned to it, and increase these competi-
tive states’ appearance number counters with the corre-
sponding factors weighted by relative likelihood;

3. Sort the competitive state list for each state according
to the number of appearance in a descending order;

4. For each state, the Nc states in the front of the sorted
competitive state list is selected as the top Nc competi-
tive states of it.

4.2. Divergence-based Determination

Our goal is to maximize the between-state model divergence
with a given total number of Gaussians. Thus, adding one
extra Gaussian component in state Si, the resulted increment
of the between-state model divergence

∆D(Λ) = ∆D(Si)
= D(Si(m + 1)) − D(Si(m)) (9)

(where m is the number of Gaussian components of state S i)
is adopted as the indicative measure to perform the divergence-
based Gaussian component allocation method.

The divergence-based determination method searches for
the state to allocate successively one extra Gaussian compo-
nent. The state for allocating the extra Gaussian component is
chosen, based upon the maximum increment of the between-
state divergence. It is a greedy search algorithm.

The method starts with allocating one Gaussian compo-
nent in each state and the corresponding between-state diver-
gence is computed. Then one extra Gaussian component is

tentatively assigned to each state in turn and a correspond-
ing increment of the divergence is computed. The state that
yields the maximum increment of the between-state model di-
vergence is assigned with one more Gaussian component and
the procedure then repeats itself. The algorithm stops when
the total number of Gaussian components reaches a preas-
signed limit.

5. EXPERIMENTAL RESULTS

TiDigits, a speaker independent, connected digit utterances
database, was used to test our method. The speech signal was
recorded from various regions of the United States. It con-
tains 12,549 strings for training and 12,547 strings for testing.
The digits string has a random length from 1 to 7. Each digit
was modelled by a 10-state, whole-word based HMM. And
a 3-state silence model and a 1-state short pause model were
added. The features were the conventional 39-dimensional
MFCCs (12 static MFCCs, log energy, and their first- and
second-order time derivatives).

Fig. 2 gives the recognition performance (in Word Er-
ror Rate (WER)) curves against the average number of Gaus-
sian components per state for fixed, uniform determination
(same number of Gaussians per state), the BIC-based and the
divergence-based determinations. It shows that, with compa-
rable total number of Gaussians, both the BIC-based and our
proposed determinations give much better recognition perfor-
mance than the fixed, uniform determination. We also found
that using our divergence-based determination, the resulted
model with on average 12 components per state has almost
the same performance as the model resulted by the BIC-based
determination with on average about 19 Gaussians per state.
That is to say, compared with the BIC-based determination,
our proposed method successfully reduced the total number
of Gaussians by about 37% with almost the same recognition
performance.

6. CONCLUSIONS

In this paper, we propose a new method to determine the num-
ber of Gaussian components of each state in HMM-based
speech recognition system. Different from the fixed deter-
mination or the Bayesian Information Criterion-based deter-
mination, we use the between-state model divergence as the
indicative measure to determine the number of Gaussians.
The Kullback-Leibler divergence is used with its unscented
transform based approximation to measure the between-state
divergence. The algorithm is performed successively, one
Gaussian at a time, by searching over all the states. Signif-
icant improvement of the recognition performance was found
in our experiments. A smaller size model can be obtained
with almost the same recognition performance.

For the time reason, we only tested our approach on the
TiDigits database. Its efficiency has been proved on this sim-
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Fig. 2. Recognition performance with different determina-
tion methods vs. average number of Gaussian components
per state

ple system. In the near future, we’ll test our method on large
vocabulary continuous speech recognition tasks to see whether
its efficiency is consistently maintained on more complex sys-
tems.
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