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ABSTRACT

Decision tree state clustering is explored using a cross valida-
tion likelihood criterion. Cross-validation likelihood is more
reliable than conventional likelihood and can be efficiently
computed using sufficient statistics. It results in a better tying
structure and provides a termination criterion that does not
rely on empirical thresholds. Large vocabulary recognition
experiments on conversational telephone speech show that,
for large numbers of tied states, the cross-validation method
gives more robust results.

1. INTRODUCTION

Decision tree clustering is an important method for context-
dependent HMM modeling, not only for robust parameter es-
timation but also for predicting probability distributions for
unseen contexts [1]. The tree is grown step by step, choos-
ing questions that divide the context using a greedy strategy
to maximize some objective function. Several objective func-
tions have been proposed, such as likelihood [1] and cross-
entropy [2]. Likelihood-based clustering is the most popular
method and known to be effective. The maximum likelihood
criterion is also consistent with the overall objective of the
standard HMM training algorithm.

A limitation of the likelihood objective, however, is that
it is guaranteed to increase as parameters are added, e.g. new
nodes in the tree, since the splits are trained and evaluated us-
ing the same data. Hence, the tree can potentially grow until
all states are untied. Furthermore, the decisions made in tree
growing are unreliable when there are a small number of sam-
ples associated with a node. The problem is exacerbated when
dealing with large candidate question sets, which are of in-
terest for introducing new knowledge sources to characterize
acoustic variability, such as syllable structure [3] and acoustic
cues such as speaking rate and SNR [4]. To deal with these
problems, empirical thresholds are required such as minimum
likelihood difference before and after node splitting and min-
imum occupancy counts of a state [5]. To determine these
thresholds, it is necessary to run several recognition experi-
ments, which can be very time consuming for systems using
large amounts of data.

These problems of the likelihood based method are due
to the lack of a mechanism of balancing the number of pa-
rameters and accuracy of parameter estimation. Information-
theoretic criteria such as MDL and BIC provide means to se-
lect a model with proper model complexity for a given amount
of training data and have been applied for tree-based cluster-
ing [6, 7]. These criteria have a theoretically-derived penalty
term in addition to the likelihood that balances model fit vs.
complexity. However, in practice, a generic coefficient for the
penalty term often does not work well, and again it requires a
empirically tuned weight factor.

In this paper, I investigate a cross-validation-based tree
clustering method, similar to that proposed in [8]. Cross-
validation is known to be a straightforward and useful method
for structure optimization, which can lead to more robust de-
cisions and a simple criterion for determining the optimal tree
size. To apply cross-validation for tree clustering, a key issue
is how to reduce the computational cost, which can be quite
large if the cross-validation likelihood is calculated for each
question directly from the observations assigned to a node.
The main contribution of this work is the presentation of an
efficient approach to cross-validation likelihood computation
using sufficient statistics, which makes it possible to use more
cross-validation folds than in previous work and train more
complex models. While the previous work assumed semi-
continuous HMM to save computational cost, the proposed
method works for continuous HMM. I also report recogni-
tion results on conversational telephone speech comparing the
cross-validation technique to the more common likelihood-
based approach in small training set scenarios, showing that
more robust trees are generated when the complexity is high.

2. DECISION TREE STATE CLUSTERING

Decision tree HMM state clustering is a top-down clustering
method to optimize the state tying structure for robust param-
eter estimation. A leaf of the decision tree corresponds to a
set of HMM states to be tied. The tree growing process be-
gins with a root node that may have all HMM states, or all
states associated with a particular phone, etc. Then, a ques-
tion is selected that divides the set of states into two subsets
assigned respectively to two child nodes, chosen so that the
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corresponding new HMM has the largest likelihood for train-
ing set. The tree is grown in a greedy fashion, successively
splitting nodes by selecting the question and node that maxi-
mize likelihood gain at each step.

In the conventional approach to tree-based clustering, it
is assumed that the state alignment does not change with dif-
ferent tying configurations, to reduce the cost of computing
likelihoods. In this case, the likelihood change due to expand-
ing the parameter set (splitting a node) is simply given by the
change in observation likelihoods of the impacted states. The
model parameters and associated observation likelihoods can
be computed efficiently by using the pre-computed sufficient
statistics associated with each state in the model (which may
be based on either Viterbi or EM-statistics) .

In the proposed clustering method, likelihood is estimated
using the cross-validation method. For N -fold cross-validation,
the training data is randomly divided into N different groups.
Then, a model is trained using N−1 groups of data, and likeli-
hood is computed for the group excluded in the training. This
process is repeated for N times with different combinations of
N −1 groups. The likelihood is accumulated and used for the
question selection. In the next section, I show that this likeli-
hood can also be computed efficiently using sufficient statis-
tics. To distinguish conventional and cross-validation based
likelihood, they are hereafter denoted as “self-test likelihood”
and “CV likelihood”, respectively.

2.1. Algorithm for obtaining CV likelihood

Let D be a training set and Df be a partition for N-fold cross-
validation. That is,

D =
N⋃

f=1

Df , Di

⋂
Dj = φ (i �= j) . (1)

For the f -th evaluation, D̄f =
⋃

f ′ �=f Df ′ is used to estimate
HMM parameters and Df is used to evaluate likelihood. Let
S be a set of states, s be a state, γs (t) be occupancy probabil-
ity of state s at time t, and xt = (x1 (t) , x2 (t) , · · · , xd (t))T

be d-dimensional feature vector at time t. Let A0
f (s), A1

f (s)
and A2

f (s) be the sufficient statistics of the observations align-
ing to state s. For diagonal Gaussian distributions, these are:

A0
f (s) =

∑
t∈Df

γs (t) , (2)

A1
f (s) =

∑
t∈Df

xtγs (t) , (3)

A2
f (s) =

∑
t∈Df

x2
tγs (t) , (4)

where x2 =
(
x2

1, x
2
2, · · · , x2

d

)T
.

Using these statistics, the f -th ML estimates of mean vec-
tor µ and variance vector v of state s from D̄f are:

µf (s) =

∑
f ′ �=f A1

f ′ (s)∑
f ′ �=f A0

f ′ (s)
, (5)

vf (s) =

∑
f ′ �=f A2

f ′ (s)∑
f ′ �=f A0

f ′ (s)
− µf (s)2 . (6)

Let Lf be the log likelihood for f -th data fold using Gaus-
sians that have means µf (s) and variances vf (s), as shown
in equation (7), where Σ is a diagonal covariance matrix whose
main diagonal is v. By putting the summation over t inside
and utilizing the assumption that Σ is a diagonal matrix, equa-
tion (7) can be efficiently evaluated using the pre-computed
statistics A0, A1, and A2 as shown in equation (8), where
v−1 =

(
v−1
1 , v−1

2 , · · · , v−1
d

)
. Finally, the CV likelihood L is

obtained by summing the likelihoods for each fold:

L =
N∑

f=1

Lf . (9)

2.2. Splitting gain and termination criterion

Likelihood gain ∆L is defined as the difference of the likeli-
hood before and after splitting:

∆L (Q) = L′ − L, (10)

where L and L′ are the likelihoods before and after a splitting
by a question Q. During decision tree clustering, questions
are selected so as to maximize ∆L. Since the likelihood is
based on cross-validation, ∆L can take negative values unlike
with the conventional self-test likelihood. A negative gain in-
dicates the splitting yields HMM with too many parameters
for the training set and the parameters can not be estimated
properly. Therefore, when using CV likelihood, a good ter-
mination criterion for splitting is

max
Q

∆L (Q) < 0. (11)

This criterion does not require any empirical thresholds. We
refer to it as the zero-gain criterion.

2.3. Computational and storage costs

The statistics A0
f (s), A1

f (s) and A2
f (s) are computed prior

to clustering for each HMM state, requiring N times the stor-
age for N folds but essentially no additional computation com-
pared to the self-test likelihood approach. During each ques-
tion evaluation, the computation increases by a factor of N
due to the need to compute different sets of model parame-
ters and Lf for each of the N folds. Since the computational
cost of clustering is small relative to other aspects of HMM
training, an increase by even a factor of N = 10 is quite rea-
sonable.
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Lf =
∑

t∈Df

∑
s∈S

log

⎧⎨
⎩

1√
(2π)d |Σf (s)|

exp
(
−1

2
(xt − µf (s))T Σf (s)−1 (xt − µf (s))

)⎫⎬
⎭ γs (t) (7)

= −1
2

∑
s∈S

{
log

(
(2π)d |Σf (s) |

)
A0

f (s) +
(
vf (s)−1

)T

A2
f − 2

(
Σf (s)−1

µf (s)
)T

A1
f +

(
vf (s)−1

)T

µf (s)2 A0
f

}

(8)

3. EXPERIMENTS

Large vocabulary recognition experiments were conducted on
conversational telephone speech to compare the usefulness of
CV vs. self-test likelihood with different amounts of training
data. In these initial experiments, small training sets are used
(rather than increased question sets) in order to better explore
the effect of the different criteria on sparse contexts.

3.1. Paradigm

The Decipher [9] system was used for model training and test-
ing. The dictionary is based on 38k-word vocabulary and
has 83k entries including multi-words and multiple pronun-
ciations. Triphone HMMs are used with a three-state left-to-
right topology and 47 phone set. Decoding involves rescor-
ing a lattice of initial pass hypotheses with a speaker-adapted
model (MLLR) and a 4-gram language model. Note that this
system is different from the standard SRI recognition system
in that it has only PLP cross-word triphone models, uses sin-
gle mixture distributions (except where noted), uses only ML
training (vs. MMIE and MPE), and the training set is much
smaller than in the full system. The training sets were ran-
domly sampled from the Fisher corpus, using subsets of sizes
16, 32 and 64 hours. The test set was the RT04 DevTest set.

For the tree based clustering, a total of 567 questions are
used. These questions are about left and right phone context,
phone category such as nasal and front vowel. Syllable and
word attribute questions are also included that ask whether
the phone is at beginning, middle, or the end of the units. The
identity of the center phone and the state position are also part
of the question set. To make self-test likelihood based method
work properly for large trees, a variance floor of 1.0E−6 was
used, and the same setting was applied for the CV likelihood
method. The sufficient statistics were calculated from Viterbi
alignment. The cross validation uses 10 folds.

3.2. Results

The first set of experiments, based on 16 hours of training
data, looked at likelihood and word error rate (WER) be-
havior for trees designed using the two methods for a wide
range of complexities. Figures 1 and 2 show self-test and
cross-validation likelihood gain and likelihood, respectively,

obtained for different numbers of clusters during clustering.
As shown in the figures, CV-likelihood gains decrease much
more rapidly than the optimistic self-test likelihood gains and
(unlike the self-test gains) eventually become negative at the
point of overtraining. The optimal number of clusters indi-
cated by the zero-gain criterion was 12k in this case.
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Fig. 1. Number of states vs. splitting gain.
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Fig. 2. Number of states vs. total likelihood.

Figure 3 shows the relation between the number of pa-
rameters and the WER of Gaussian HMMs using the 16 hour
training set. The WERs of the self-test and cross-validation
based clustering are similar when the number of states is rela-
tively small, because many samples are assigned to a state and
the probability distribution is estimated properly regardless of
the method. Not surprisingly, the first 42 questions selected
by the two methods were identical. When the number of states
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is large, the CV likelihood criterion gives lower WER, be-
cause the number of samples per node becomes small and
there is more potential for the optimistic self-test criterion to
lead to a poor choice of questions. The lowest WER is ob-
tained with 6K states and 18K states for the self-test and CV
likelihood criteria, 42.0% and 40.8% respectively, indicating
that the CV criterion is more robust for complex models. In
addition, we observe that both the likelihood and WER are
relatively stable for the CV criterion over a wide range of state
sizes. In fact, the 12k-state stopping point predicted by the
zero-gain criterion is conservative in this case, and slightly
better performance is obtained with a larger tree (40.8% vs.
41.5% WER).
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Fig. 3. Number of states vs. word error rate.

For 32 hours of data, the optimal stopping point based on
the zero-gain criterion was 18k. For this number of clusters,
the WER of self-test and cross-validation based method were
40.9% and 39.6%, respectively, and the absolute WER reduc-
tion was 1.3%. When number of the mixtures were increased
to four, their WER were 32.9% and 32.1%, respectively, and
the absolute WER reduction was 0.8%. For 64 hours of data,
the optimal number of states would be much greater than this,
yet the standard heuristics associated with the self-test method
result in 1.5k clusters.

4. DISCUSSION

The results above show that the CV likelihood criterion leads
to more robust decision tree state tying and a more princi-
pled stopping criterion, with bigger potentially gains for more
complex systems indicated by the differences in the 16 vs.
32 hour systems. The likelihood is evaluated using an effi-
cient algorithm based on sufficient statistics, so the increase
in computation is a factor of N (for N -fold CV), which is rea-
sonable for N = 10 given the low relative cost of tree design.

Unfortunately, because the algorithm is more robust, a
strict application of the zero-gain criterion with diagonal Gaus-
sian distributions leads to a very large model space. In the
conventional approach, a much smaller model space would

be designed, and then complexity introduced through using
Gaussian mixture distributions. While the CV likelihood cri-
terion could be used in this framework to obtain more robust
question choices, the stopping criterion is no longer valid be-
cause it is based on single Gaussians in a context where mix-
tures will be used. Furthermore, if the tree size is small rela-
tive to the optimum, then the differences between the self-test
and CV likelihood trees are minimal, and there will be little
difference in the systems after the mixtures are introduced, as
evidence in our experiments with 1.5k clusters and 128 mix-
ture components trained on 64 hours of data. These problems
can be solved by extending the CV likelihood criterion to a
search space covering state clustering plus mixture splitting.
Such an extension will be important for gains to be realized
on larger training sets.
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