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ABSTRACT

This paper looks at the problem of confidence estimation at
the word network level, where multiple hypotheses from a
recognizer are represented in a confusion network. Given fea-
tures of the network, an SVM is used to estimate the proba-
bility that the correct word is missing from a candidate slot
and then other word probabilities are normalized accordingly.
The result is a reduction in overall bias of the estimated word
posteriors and an improvement in the confidence estimate for
the top word hypothesis in particular.

1 Introduction
There is increasing interest in applying language processing
technology, such as information extraction and machine trans-
lation, to spoken documents (voicemail, meeting recordings,
broadcast news, etc.). However, input from speech recogni-
tion systems typically contains errors, so it is useful to have
some measure of the recognizer’s confidence that the word is
correct in order to allow systems to deweight the importance
of certain words and thereby reduce the adverse affects of er-
rors.

Most speech recognition systems provide a confidence es-
timate for the best word hypothesis. Usually the word posteri-
ors resulting from the recognition process are over confident,
because (in order to be computationally tractable) recogniz-
ers prune the set of hypotheses that are considered and the
word likelihoods are thus normalized by some subset rather
than the total hypothesis space. When the pruned hypothesis
space is richer, then better results are obtained, as illustrated
by the improvements from using word graphs rather than N-
best lists in [1]. To account for this bias, previous work has
trained models to warp the confidence of the top word hypoth-
esis to obtain a more accurate measure [2, 3]. Alternatively,
the use of a background model to cover the pruned space is
proposed in [4].

This work departs from previous work by addressing the
issue of bias for multiple word hypotheses generated by the
recognizer, not just the top hypothesis. By improving the con-
fidence estimate for all word hypotheses we improve the abil-
ity of downstream systems to make use of alternative words
and have accurate confidence measures for those words. Our

method directly models the probability that the recognizer
did not hypothesize the correct word, and uses this predicted
probability to adjust the hypothesized word posteriors. Ex-
perimental results show that this simple predictor reduces the
problem of bias in word posterior estimates for the whole
network and improves the 1-best confidence estimate signif-
icantly as well. In addition, we can use this probability of a
missed word for other tasks such as out-of-vocabulary (OOV)
word detection or other types of error handling.

Our approach builds on the confusion network represen-
tation of word uncertainty, which is described in Section 2
to present the framework and illustrate the problem of bias.
The method for predicting the missed word probability and
thereby adjusting the network posteriors is described in Sec-
tion 3. The experimental paradigm and results are described
in Section 4 and 5, respectively. Contributions and open ques-
tions are summarized in Section 6.

2 Confusion Network Posteriors
This work assumes a confusion network representation of rec-
ognizer uncertainty. A confusion network (CN) is a compact
representation of a word lattice or N-best list, where the com-
plexity of the lattice or list representation is reduced to a se-
ries of slots that each have word hypotheses (and null arcs)
and associated posterior probabilities [5]. The posterior prob-
abilities of all hypotheses in a slot (including the null arc, if
present) are chosen such that they sum to one. This effectively
assigns zero probability to the event that the word is not in the
lattice (or list), which results in an optimistic bias of the word
posteriors since such events do occur, particularly for OOV
words.

To illustrate the problem of bias, Figure 1 shows a plot
of the relative frequency that hypothesized words are correct
as a function of their predicted confidence, using data from a
conversational speech recognition task described further be-
low. The relative frequencies are computed by binning over
different confidence intervals. The distance of the curve from
the diagonal line reflects the bias of the estimate. Where the
curve falls below the diagonal, the estimates are “over confi-
dent”, e.g. words predicted with a posterior of 0.8 are correct
in less than 60% of the cases. Similarly, when the curve is
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above the diagonal, as for the low posterior cases, the esti-
mate is lower than it should be.
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Fig. 1. Relative frequency that a hypothesized word is correct
as a function of the predicted posterior in a CN.

Were it not for the bias, the posterior probability of the
top word in the CN would be a reasonable confidence esti-
mate for that word. To obtain better confidence estimates,
it is common practice to use a secondary classifier, such as
a neural network (NN) [2], that takes as input this posterior
probability (or a posterior calculated in some other way from
the lattice) as well as other features of the lattice or CN. This
is a useful approach if one only wants the confidence of a sin-
gle hypothesis, but it is not practical if one wants to adjust the
posteriors of all arcs in the lattice.

3 Network Posterior Adjustment
An obvious solution to the problem of over-confidence is to
introduce an entry in each slot to account for the event that
the correct word is not in the list. The probability of a missed
word is predicted independently at each slot in a manner some-
what similar to confidence prediction techniques that combine
recognizer posteriors with other features. (An advantage of
this approach over using a background model is that the ad-
ditional features can provide cues beyond what is captured in
the recognizer acoustic and language models.) Then, the word
and null-arc probabilities are simply renormalized to account
for the added probability mass. Thus, the simple prediction of
a series of probabilities of missed words has the effect of ad-
justing the posteriors of the full network. Also, the addition
of a missed word probability may be useful for other tasks,
such as OOV detection.

Many different approaches are possible for predicting the
missed word probability. Details regarding the features and
prediction models used in the experiments conducted here
are described next. In order to extract features and train the
model, we align reference transcriptions with CNs for a col-
lection of recognizer test data. A separate recognizer test set
is used for evaluating the prediction and its impact on the CN
posteriors as a whole.

3.1 Features

As the “baseline” set, we adopt the features used in previous
work [2], which include: the length-normalized position of
the word in the sentence; the log length of the sentence; two
Boolean features indicating whether the adjacent slot (to the
left and right) has the null arc as the most probable word; the
posterior probability of the mostly likely word in the current,
left and right slots; and the unigram word probability from
the recognizer language model. In the “extended” set, we
include additional feature types: the mean and variance of the
posteriors in the current slot, length (in characters) of the top
word, and the Boolean features from above extended to the
slots two to the left and right of the current slot. In addition,
we explore also adding the lexical identity of the top word in
the current slot, referred to as the “full” feature set. Boolean
features are added for each word, either for the top 1000 most
common words, or for all words in the dictionary.

3.2 Models

Given a set of features, the problem is to predict the posterior
probability of a binary event (whether or not the list is miss-
ing the correct word), which could be based on a statistical
binary classifier or a regression model. Initially, we trained
a NN with the same setup as used in previous work on con-
fidence prediction [2]. However, although the NN approach
is effective for improving the confidence estimate of the top
hypothesis, its performance was poor in predicting missing
word probabilities. We then adopted support vector machine
(SVM) regression as an approach that was more flexible (i.e.
allowed easily for a larger feature set, such as the lexical word
feature). SVMs have been used with success in other work on
word error detection [6]. The SVM with a linear kernel was
not a successful approach, but a Gaussian kernel improved
results to a reasonable level. In both cases, the models are
trained by using a target of 1 when the reference word is not
present in the slot hypothesis list, and 0 when it is.

Analysis of preliminary experiments indicated some re-
gions that were not being handled well by the classifiers. An
SVM trained on all words performed poorly for words that
received very high recognizer posteriors (.999 and greater).
Since these comprised more than half of the slots and the ac-
tual accuracy for these words was .95, a simple heuristic so-
lution imposed a minimum probability of miss equal to .05.
This provided improved results, but did not completely ad-
dress the issue. An alternative solution was to train two clas-
sifiers, one for slots with confidence greater than .95, and one
for those less than .95 (before clipping). As shown in the ex-
periments, combining these approaches gave the best results.

4 Experimental Paradigm
Experiments are conducted on a conversational telephone speech
recognition task. The recognizer used for our experiments is
the SRI 20 times real time Decipher system with small mod-
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ifications from the system used for the 2004 DARPA eval-
uations. This is a state-of-the-art system, which combines
three systems (MFCC cross-word, MFCC non-cross-word,
and PLP cross-word) with cross adaptation and a final Rover
step. The data sets used for training and testing the missed
word probability predictor are the from the NIST RT evalua-
tions. Training is performed on the development test set from
2004, and testing on the evaluation set from 2003.

The results are evaluated in three ways, associated with
the different tasks that might benefit from this approach. First,
to evaluate the impact of posterior correction over the whole
CN, we present a plot of the word accuracy versus predicted
confidence that reflects the percent of words that are correct
over multiple confidence intervals, as in Figure 1. To evaluate
the impact on the confidence estimate of the 1-best word hy-
pothesis, we use the standard normalized cross entropy (NCE)
measure [7]:

NCE = (Hmax − Hconf )/Hmax

where

Hmax = −pc log2 pc − (1 − pc) log2(1 − pc)

Hconf = −1/n[
∑

wi corr

log2 pi +
∑

wi err

log2(1 − pi)]

and where pc = nc/n is the average probability that a hy-
pothesized word is correct, pi is the predicted confidence that
wi is correct, and the sum is over all n hypothesized words
in the test set. Finally, to evaluate the prediction of the prob-
ability of a missing word (i.e. the correct word is not in that
slot in the confusion network), we use a decision-error trade-
off (DET) curve. The DET curve is a standard method for
showing system performance on detection tasks, illustrating
the trade-off in the percentage of misses and false alarms.

5 Experiments
The primary aim of our experiments is to improve the confu-
sion network as a whole. A series of experiments evaluating
different feature sets and model configurations for that pur-
pose are described in Section 5.1. In addition, we examine
the impact of the resulting system on 1-best confidence esti-
mation and missing word detection, in Sections 5.2 and 5.3,
respectively.

5.1 Confusion Network Posterior Correction
Our first series of experiments explored the different feature
sets (baseline, extended and full) with a single regression SVM.
Recall, the baseline feature set is that used in standard NN-
based confidence prediction; the extended set adds five re-
lated features from a larger window, and the full set also adds
lexical identity. As shown in Figure 2, the extended features
improve results, although the full feature results do not.

The majority of the CN slots had a top word with a pos-
terior (from the recognizer) greater than .95, so to investi-
gate further modeling improvements we experimented with
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Fig. 2. Various feature sets using one SVM

using two SVMs to separate out the large portion of the data
which had very high “original” posteriors: one SVM for slots
with a top word having a posterior greater than .95, and the
other SVM for those with a top word having confidence less
than .95. The performance for mid-range confidences was
improved, and the best results were obtained with all lexical
identity features, but the results for the very highest confi-
dence words were still severely biased. The poor performance
was in part attributable to sparseness, because very few words
remained with high confidence after applying the two SVMs.
This problem is addressed by introducing a heuristic cap of
.95 on the posteriors, chosen because the words with confi-
dence of 1 output by the recognizer are only 95% accurate
(this threshold would likely need to be tuned for other tasks).
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Fig. 3. Comparison of bias plots for original posteriors, com-
pensation using the best single SVM, and compensation using
the best dual SVM with thresholding.

Figure 3 shows a comparison of the bias of the original
confidence output by the recognizer, the best single SVM
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(with extended features), and the full feature dual SVM with
thresholding. With the best case system, almost all of the bias
has been eliminated.

5.2 1-Best Word Confidence Prediction

As described earlier, the highest ranking word in a slot is the
best recognizer output, and its posterior probability can be
used as a confidence estimate. While the goal of this work
is to improve the posteriors in the network as whole, it is of
interest to assess the impact on the 1-best hypothesis because
of its particular importance. The original unwarped CN con-
fidences give a NCE of .161 (with confidences clipped at .05
and .95 to avoid negative NCE values). Using the predicted
missed word probability to normalize the network with the
baseline feature set increases NCE to .187. Using the same
features in a NN trained to predict 1-best word confidence
explicitly results in an NCE of .222. The NCE of the 1-best
word confidence using our best network compensation system
(two SVMs, the full feature set, and thresholding) is .259.

5.3 Detecting Missed Words

The probability of missed word output by our system could
also be used to detect slots where the recognizer has not hy-
pothesized the correct word, which would indicate regions
where the lattice (or lexicon) should be expanded and the hy-
pothesis rescored. The DET curve in Figure 4 shows curves
for our system with the baseline features, and with the full
feature set. The full feature set is almost always better than
the baseline features, but still does not have great success.
When false alarms are limited to 10%, 60% of the slots with
missing words are not detected.

Fig. 4. DET curve for detecting slots with missing words.

6 Conclusion
In summary, this work addresses the problem of accurate word
posterior probability estimation at the network level, using
prediction of the probability of missed words to adjust for bi-
ases introduced by using confusion networks. Using SVMs
and simple features of the local context in the confusion net-

work, very good performance is achieved, removing most of
the bias in the network estimates. Using the resulting 1-best
word posterior as a confidence estimate is an improvement
over the original network, though not quite as good as pre-
dicting the corrected confidence for that word directly using
the same features (using a NN). However, the SVM can make
use of additional features that lead to an overall improvement
in 1-best word confidence. A by-product of the method is the
availability of a probability of missed words, which might be
used for OOV or more general error detection. Unfortunately,
the performance of that detector on its own is still quite poor.
One direction for future work is to improve this component.
In addition, we plan to assess the impact of the network im-
provements on system combination and model adaptation.
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