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ABSTRACT 

Compared to multi-condition training (MTR), condition-
dependent training generates multiple acoustic hidden Markov 
model sets each identified by a noisy environment and is known to 
perform substantially better for known noise types (included in 
training) while worse for unknown (untrained) noise types. This 
paper attempts to bridge the performance gap between known and 
unknown noise types by introducing a Minimum Mean-Square 
Error (MMSE) noise-type based compensation algorithm. On the 
basis of a modified Vector Taylor Series and the measurement of 
feature reliability as well as noise similarity, the MMSE 
estimation adapts the test features corrupted by the unknown noise 
type to the corresponding features corrupted by the known noise 
type. This method significantly improves the recognition 
performance for unknown noise types while maintaining the good 
performance for known noise types. Furthermore, in order to 
benefit directly from MTR, a model interpolation strategy is 
investigated which combines the MTR and the condition-
dependent model sets. Both good performance and low 
computational cost are achieved by only interpolating the mixtures 
of each condition-dependent model state with the least weighted 
mixture in the corresponding MTR model state. The overall 
system gives promising results. 

1. INTRODUCTION 

It is well known that noisy environments significantly degrade the 
performance of an Automatic Speech Recognition (ASR) system, 
in particular when the system is trained on clean speech. The 
relatively low robustness against environmental noise has become 
one of the major obstacles for the widespread deployment of ASR 
technology. 

To tackle this problem, multi-condition training (MTR) 
introduced in [1] was applied in training the acoustic Hidden 
Markov Model (HMM) set over a speech corpus corrupted by a 
number of noise types and Signal-to-Noise Ratios (SNR) likely to 
be encountered during use. The MTR method in general improves 
the ASR performances for both known (included in training) and 
unknown types of noise as compared to the clean training. 

The performances for known noise types are further improved 
by introducing condition-dependent training strategies. In these 
strategies, multiple HMM sets are trained - each for a noise type as 
in [2] or for a combination of a noise type and a specific SNR 
value as in [3]. During recognition, model selection approaches 
are used to choose only one model set for recognition so that the 
extra computational cost introduced is as low as possible. Among 

these methods, it has been verified that the SNR and Noise 
Classification based Multiple Model Framework (SNC-MMF) 
performs best for the known types of noise [3].  

However, it is worthwhile noting that training HMM models 
for all conditions (noise types) is normally impractical and 
condition-dependent training strategies must manage the problem 
with unknown noise types for which they often perform much 
worse than the MTR. Unfortunately, it is rare to see any research 
in the literature targeting this problem. 

In this paper, the performance gap between known and 
unknown noise types is reduced by adapting the test feature 
corrupted by the unknown noise type to the feature corrupted by 
the known noise type corresponding to the selected SNC-MMF 
model set. This results in a noise-type based feature compensation 
method. For each Mel component, the method is implemented in 
two steps. In the first, the reliability and the noise similarity are 
measured to indicate the probability of the component being 
speech-dominant and the probability of the contained noise 
belonging to the known noise type, respectively. In the second 
step, the adaptation is performed by the Minimum Mean-Square 
Error (MMSE) estimation based on the measured reliability and 
noise similarity. Specifically, the Mel component which contains 
the same noise as the known noise type is unchanged to preserve 
information whereas the component containing the unknown noise 
type is either replaced directly by the known noise or adapted to 
the known-noise-corrupted noisy speech by a modified Vector 
Taylor Series (VTS) [4] depending on the reliability measurement. 
This method shows significant ASR performance improvement for 
the unknown noise types and maintains a good performance for 
the known types of noise. 

Additionally, wanting to achieve further robustness to 
unknown noise types, this paper investigates model interpolation 
(MI) between the SNC-MMF and the MTR model states as the 
MTR models generally show good performance for unknown 
noise types. In [3], MI is implemented by linear combination of 
two model sets resulting in doubling the number of mixtures in 
each state and a doubling of the computational load. Instead of 
using all the mixtures in the MTR model set, this paper proposes 
to perform the MI between each SNC-MMF model state and the 
least weighted mixture within the corresponding MTR model state 
only. Compared against the old strategy, the models resulting from 
the new strategy achieve a similar recognition performance with a 
much lower computational complexity. 

2. THE SNC-MMF FRAMEWORK 

The SNC-MMF divides the noise corrupted training database 
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based on the type of additive noise and SNR value. A number of 
HMM model sets are then built - each for a combination of SNR 
value and noise type. This condition-dependent training leads to 
sharper Probability Density Functions (PDF) for each model set 
and thus ensures better discrimination for speech than the MTR. 
The efficiency of the ASR decoding is maintained by selecting 
only one model set according to the estimation of noise type and 
SNR value respectively from the noise classifier and the SNR 
estimator. 

In [3], it has been experimentally verified that with only three 
model sets for each known noise type, significant improvement 
can be obtained for the known noise types as compared to the 
MTR method while the performance for the unknown noise types 
is lower, due to the training-test noise type mismatch. Thus, the 
challenge here is to improve the performance for unknown noise 
types while maintaining the good performance achieved for known 
noise types. Our solution is to mitigate the noise-type difference 
between the training and test through noise-type based feature 
compensation techniques, and this is achieved by performing the 
MMSE estimation in combination with the measurement of the 
reliability and noise similarity in each Mel component. 

3. MMSE NOISE-TYPE BASED COMPENSATION 

This section introduces the noise-type based compensation 
method in detail with the aim of adapting the test speech features 
corrupted by the unknown noise type (denoted as the source noise) 
into those corrupted by the known noise type (denoted as the 
target noise). 

3.1 Measurement of the reliability and noise similarity 

For each Mel component, the reliability r and noise similarity nl
are first measured to identify whether the source speech signal is 
speech dominant (reliable) and whether the source and target 
noise types are the same. 

3.1.1 Noise estimation for the source environment 

Evaluating r and nl requires noise estimation for the source 
environment. Instead of using voice activity detection (VAD) 
based noise estimation as in [5] [6], the minimum statistical noise 
estimation (MSNE) [7] is adopted in this paper to acquire the 
noise estimation
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instantaneously for each logarithmical Mel component (ith) in 
each frame (kth) of the source noisy speech. With the observation 
that MSNE is still not accurate enough and only approximately 
tracks the averaged frame-by-frame noise changes, the noise is 
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where the mean is the noise estimation from MSNE and the 
variance )(2 i

YNσ reflecting noise estimation errors is assumed 
stationary and is estimated from the first several non-speech 
frames of each utterance only. 

3.1.2 Reliability  

In this paper, the reliability is measured by the soft “missing data” 
mask [6]. Unlike the fuzzy mask used in [6] which adopts a 
sigmoid function, a more meaningful mask is obtained in terms of 
the above noise model by directly calculating the probability that 

noise energy is lower than the clean speech: 
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where Nk(i), Xk(i) and Yk(i) denote the ith logarithmical Mel 
components of the kth frame for source noise, clean speech and 
source noisy speech, respectively. The CDF(x;a,b) calculates the 
Gaussian cumulative distribution function with mean a and 
variance b at value x and can be efficiently implemented by a 
look-up table. 

Eq.(1) assumes the noise and clean speech signals are additive 
in the Mel-spectral domain. Clearly, compared to the fuzzy mask, 
the probability based mask in Eq.(1) is more meaningful and free 
of sigmoid parameter tuning. In our implementation, the mask 
produced by Eq.(1) is further smoothed linearly within each frame 
to mitigate the potential errors in the produced mask. 

Fig.1 Comparisons among different soft masks: (a) a priori binary 
mask with a priori clean speech and noise; (b) the fuzzy mask as in 
[6] with the empirically determined optimal sigmoid parameters; 

(c) probability based soft mask 

Fig.1 gives an example of the masks produced by a priori
binary mask, by the fuzzy mask and by the probability based mask 
over the 10dB “restaurant” noisy speech sentence. Both the fuzzy 
mask and the probability based mask adopt the noise estimation 
from MSNE. It is observed that the probability based mask 
performs better than the fuzzy one especially in the noise 
dominated parts.  

3.1.3 Noise similarity 

Assuming the noise logarithmical Mel component Gaussian 
distributed, the noise similarity nl is evaluated by the Gaussian 
CDF function as: 
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where )(iN Z denotes the ith logarithmical Mel component of the 
target noise, and its mean )(i

ZNµ and variance )(2 iZNσ can be 
estimated during training. 
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3.2 Estimation of the target Mel component 

3.2.1 MMSE estimation 

Given the source logarithmical Mel component Yk(i) which may 
contain unknown type of noise, MMSE is utilised to estimate the 
corresponding target component Zk(i) as: 
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The conditional PDF ))(|)(( ikYikZf can be extended based 
on the measured reliability and noise similarity: 
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where )(| iYZ
kµ and )(|,

2 iYZkσ are respectively the mean and variance 
of the target speech conditioned on the observed source speech. 
Putting Eq.(4) into Eq.(3), the final estimation for the target noisy 
speech is given by: 
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For different nl-r cases, Eq.(4) and (5) indicates different 
processing strategies: when the contained source noise is similar 
to the target noise type (the first term), the source and target noisy 
Mel components are treated as the same for the sake of 
maintaining the potential information in it; when noise type 
mismatch occurs, the conditional PDF of the noise-dominant 
component (the third term) is taken as the a priori distribution of 
the target noise type, and the PDF of the speech-dominate 
component (the second term) is assumed Gaussian and its mean 
value - YZ |µ - can be estimated later by a modified VTS.  

3.2.2 Estimation of YZ |µ  by VTS 

To complete the calculation in Eq.(5), YZ |µ  in this paper is 
estimated by the VTS algorithm. In the clean-training and noisy-
test scenario, the original VTS [4] models the PDF of the clean 
speech logarithmical Mel-spectrum by a Gaussian Mixture Model 
(GMM). Given the test utterance and its noise estimation, it then 
uses MMSE to obtain the clean features for recognition. This is 
feasible for one-model cases where only one GMM is needed. 
However, since several noisy HMM model sets are employed in 
the SNC-MMF, it is not realistic to produce and store a number of 
GMM’s each for a training acoustic environment. Instead, only the 
GMM for clean speech with 128 mixtures is generated and the 
nonlinear relationship between the source and target noisy speech 
in the logarithmical Mel domain are linearly approximated within 
each Gaussian mixture. The first-order VTS calculation is then 
modified as follows: 
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where 
m

µ  is the mean value of the mth mixture in the clean 
speech GMM, and g(x, n) the distortion function with the clean 

speech x and noise n. The conditional probability P(m|y) is
obtained the same as [4] by adapting the clean speech GMM to the 
noisy speech GMM for the test environment. 

Instead of using the instant noise estimation from the MSNE, 
the noise estimation )(iN for the source speech signal is acquired 
from the first several non-speech frames so that the GMM 
adaptation and the calculation of the g functions only need to be 
fulfilled once for each utterance. 

4. MODEL INTERPOLATION 

It has been observed that the MTR models are generally more 
robust to unknown types of noise than the SNC-MMF models. In 
[3], a Full mixture MI (F-MI) method is introduced as follows: 

)()1()()( OMTRfONfOIf αα −+= .                    (7) 

Given the observation O  in Eq.(7), )(OIf , )(ONf and 
)(OMTRf  are the PDF’s of an HMM state in the finally 

interpolated model set, the selected SNC-MMF noisy model set 
and the corresponding MTR model set, respectively. The 
interpolation factor α  is empirically chosen as 0.4. This approach 
has proved to be effective for unknown noise types but inevitably 
doubles the number of Gaussian mixtures. 

It is observed that Gaussian mixtures within each HMM state 
have different weights indicating different a priori probabilities. 
The larger the weight is, the more the mixture depends on the 
information contained in training data and is more sensitive to the 
mismatches between the test and training corpora. Thus, it is 
reasonable to expect the least weighted mixture in each MTR state 
contributes to the performance gain for unknown noise types most. 
The new interpolation strategy - Least weighted mixture MI (L-MI) 
- is adopted here by only interpolating the least weighted Gaussian 
mixture (PDF )(OMTRLf ) of each state in MTR model set with 
mixtures in the corresponding SNC-MMF state, i.e. 

)()1()()( OMTRLfONfOIf αα −+= .   (8) 

Obviously, this strategy introduces less number of mixtures in 
the interpolated model and can largely improve the computational 
efficiency as compared to F-MI. 

5. EXPERIMENTS 

The evaluations are conducted using the Aurora 2 database [8] 
which consists of connected English digits artificially corrupted by 
a number of additive noise types with SNR ranging from 20 to 0dB. 
The four noise types represented in test Set A (“Subway”, 
“Babble”, “Car” and “Exhibition”) are treated as known noise 
types in the experiments while another four represented in Set B 
are as unknown. 

Along with a 39-dimensional MFCC, the configuration of 
SNC-MMF is the same as [3]: three SNR-dependent HMM model 
sets are trained for each known noise type using SNR values close 
to 5dB, 10dB and 20dB, respectively; same to the MTR, each digit 
is modelled by 16 HMM states each with three Gaussian mixtures 
whereas the silence is modelled by 3 states each with 6 mixtures; 
for SNC-MMF model selection, the SNR estimation is conducted 
by a simple VAD-based SNR estimator, and the noise type is 
determined utterance by utterance based on the first 10 non-
speech frames and a cepstral GMM based noise classifier. 
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Table 1 compares the averaged Word Error Rate (WER) 
performance over the two test sets for the SNC-MMF, the MTR 
and the proposed methods. The VTS, which uses )(| iYZ

kµ in Eq.(6) 
directly as the estimation of )(iZ k , shows significant improvement 
for the unknown noise types but degrades the performance of the 
known noise types. The MMSE noise-type based compensation 
not only further improves the performance for the unknown noise 
types but also reclaims the VTS performance degradation for the 
known noise types. This demonstrates the necessity and 
effectiveness of using the reliability and noise similarity to protect 
the Mel components corrupted with known types of noise. 

Table 1 Averaged WER (%) for different test sets 
              Sets 
Methods 

Set A 
(Known) 

Set B 
(Unknown)

Average 

MTR 12.18 13.73 12.96
SNC-MMF 8.64 16.38 12.51

VTS 8.99 13.86 11.43
MMSE +VTS 8.63 12.69 10.66

F-MI 8.11 13.43 10.77
L-MI  8.32 13.61 10.97

F-MI+MMSE+VTS  8.51 11.45 9.98
L-MI+MMSE+VTS 8.53 11.79 10.16

Furthermore, a number of MI strategies are tested. As shown 
in Table 1, both F-MI and L-MI achieve high performance for 
both known and unknown noise types. Compared with F-MI, L-
MI only degrades the recognition performance slightly but at the 
same time reduces the computational requirements a factor about 
1/3 with the HMM model mixture number mentioned above. 
Finally, MMSE noise-type based compensation is combined with 
L-MI and further improves the overall performance which is very 
close to the results obtained by its combination with F-MI. 

Fig.2 provides the detailed recognition performance for a 
number of unknown noise types in Set B. It demonstrates that our 
observations above are generally true for all the unknown noise 
types. In particular, the MMSE noise-type based compensation 
can in a large degree “assist” the VTS method to outperform the 
MTR for all the unknown noise types - especially for the 
“Restaurant”. 

6. CONCLUSIONS 

The condition-dependent training shows a worse ASR 
performance than the MTR when unknown noise types occur 
during the recognition. This paper deals with this problem based 
on a recently proposed condition-dependent training framework - 
SNC-MMF. A feature-domain noise-type based compensation 
method is first presented to adapt the test speech features 
corrupted by the unknown noise type to the corresponding 
features corrupted by the known noise type. This method adopts 
the VTS and the measurement of the reliability and noise 
similarity to perform MMSE estimation and shows significant 
ASR performance improvement on the unknown noise types while 
maintaining the good performance for known noise types. 
Additionally, a new interpolation strategy between the SNC-MMF 
and MTR model sets is proposed and largely increases the 
efficiency of the full-mixture MI method by only interpolating 
each SNC-MMF model state with the least weighted mixture in 
the corresponding MTR HMM model state. The combination of 
the proposed methods is finally made and experiments over 

Aurora 2 indicate their promising performance for all the tested 
noise types. 
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