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ABSTRACT

Contemporary automatic speech recognition uses Hidden-Markov-
Models (HMMs) to model the temporal structure of speech where
one HMM is used for each phonetic unit. The states of the HMMs
are associated with state-conditional probability density functions
(PDFs) which are typically realized using mixtures of Gaussian PDFs
(GMMs). Training of GMMs is error-prone especially if training
data size is limited. This paper evaluates two new methods of mod-
eling state-conditional PDFs using probabilistically interpreted Sup-
port Vector Machines and Kernel Fisher Discriminants. Extensive
experiments on the RM1 [1] corpus yield substantially improved
recognition rates compared to traditional GMMs. Due to their gen-
eralization ability, our new methods reduce the word error rate by
up to 13% using the complete training set and up to 33% when the
training set size is reduced.

1. INTRODUCTION

Kernel Fisher Discriminants (KFDs) and Support Vector Machines
(SVMs) represent two recent approaches to pattern classification.
They have attracted much interest because they are capable of gen-
eralizing well, which often results in much better performance com-
pared to conventional techniques such as, e. g., artificial neural net-
works.

KFDs and SVMs have been successfully used in a wide range
of applications, e.g. handwriting recognition or protein classifica-
tion. SVMs have also been applied to speech-related problems such
as phonetic classification [2] or post-scoring of speech recognition
hypotheses [3]. However, both approaches do not integrate KFDs or
SVMs into the process of continuous speech recognition. Attempts
have been made in [4] where a tied-posterior framework is applied,
and in [5] for phoneme recognition.

The task of automatic speech recognition is to deduce the most
likely text (sequence of words) w from a given sequence X of M
observations x [6]:

P(X|w)P(w)

PIX) o

w = argmax P(w|X) = argmax

where P(X |w) is called the acoustic model and P(w) is known as
the language model. The acoustic model is usually a combination
of a lexicon breaking words into (sub-)phonetic units and HMMs
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modeling each of these units. HMMs are finite-state automata es-
pecially capable of handling temporal dynamics. Each state s is as-
sociated with an emission-probability P(x|s) which for continuous
variables « is replaced with its PDF. These PDFs are usually real-
ized using weighted sums of elementary Gaussian PDFs (Gaussian
Mixture Models — GMMs). However, determining the parameters
of such mixture-models is error-prone [7], especially if estimation
material is limited.

To overcome this problem, our approach models the emission
probabilities of the HMMs using probabilistically interpreted KFDs
or SVMs [8, 9]. Both KFD and SVM project data (samples) x €
R"™ onto a one-dimensional direction w which optimally separates
two classes (labels) w.r.t. KFD’s or SVM’s specific criteria. The
direction w may be non-linearly related to the input space R™ (cf.
section 2) and can be constructed by the SVM using only very few
samples. Using this simple one-dimensional representation of the
problem, models for class-conditional probabilities (a. k. a. emission
probabilities) may be estimated more easily and more robustly than
is often possible using the original setting in R™.

The paper is organized as follows: A brief review of KFD and
SVM is given. Different methods for their probabilistic interpreta-
tion are discussed. Baseline experiments and results are discussed
before the two new methods are evaluated and compared. A conclu-
sion finishes the paper.

2. KERNEL-BASED ACOUSTIC MODELS

Both Fisher’s Discriminant (FD) and SVM are linear classifiers which
can be extended to nonlinear classification by way of the so-called
kernel trick. Instead of applying the classifiers directly to the input
space R™ they can be applied to a feature-space F of higher, possibly
infinite dimensionality d > n. The feature-space F is nonlinearly
related to the input space through a mapping ® : R™ — F<. A ker-
nel function k(z,x') satisfying Mercer’s conditions then computes
a dot-product in F [10]:

k(z,z') = (2(z) - 2(2)) ()

The most commonly used kernel function is the Gaussian radial basis
function (RBF)

!
_lz—a'|)?

k(z,z') =e 207 (3)

Since both FD and SVM can be expressed in terms of Euclidean dot-
products (z-z") only, the extension to nonlinear classification can be
achieved by replacing the Euclidean dot-product by the dot-product
in F, which is k(z, z’) from (2).
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2.1. Kernel Fisher Discriminant

The Fisher Discriminant is a well known heuristic approach for two-
class discrimination problems [11]. Consider a training set X =
{x1,x2,...,zn} belonging to an input space X and consisting
of M samples which are split into two classes. Let the classes be
labeled with —1 and 1 defining a corresponding label vector y =
{=1,1}™. The number of samples labeled with —1 and 1 is M
and Mo, respectively. The corresponding class means are m; and
ma, respectively. Successful discrimination of the samples can be
achieved by finding a direction w where at the same time class
means are maximally separated and class variances are minimal.
Thus one has to maximize the coefficient

w? Spw

R(w) = wT Syww

“)
with Sp = (m2 — m1)(m2 — m1)? and Sy = Dy (@i —
mi)(zi—m1)"+Y, y,:l(wi—mg)(axi—mg)T denoting the un-
normalized between-class and within-class covariance matrices (of-
ten referred to as scatter matrices), respectively. By differentiating
(4) one can see that w is the leading eigenvector of the generalized
eigenvalue problem Spw = ASww.

Instead of working on the original input space we apply the
above mentioned nonlinear mapping ® : R" — F to the data X,
arriving at Kernel FD [12]. Thus (4) becomes

a’Ma
al’Na

J(a) = 5)

where o = {a M, M = (m1 — ma)(m1 — ma)”, m; =
Kiu;, 1t =1,2. K; denotes the kernel matrix of class ¢ and has

elements [k}, = k(wj,m};)}ngl’k:M"’. The kernel matrix of the
complete data set is K = [ki; = k(zs,x;)]—1. The column

vector u; contains M; elements with a common value of M, '. N is
givenby N =37, >, _.. (®(zm)—m) (B (xm)—mi)T.

Equivalently to the FD, the coefficients a of the introduced Ker-
nel Fisher Discriminant (KFD) are given by the leading eigenvector
of N~'M. However, N may become ill-conditioned or even sin-
gular. So one has to impose some kind of regularization on IV, e. g.
N¢ = N + CI,C € R where I denotes the identity matrix. The
KFD classifier is given by the projections f(x) = K a+b1 onto the
direction w = Zf\il a;®(x;). The vector 1 contains M elements
with a common value of 1 and

Mimi + Mama

b= —
« M

(6)

denotes the bias.

The KFD is equivalent to a regression to the labels contained
in y [12]. Thus instead of solving a generalized eigenvalue prob-
lem imposed by (5) one can obtain a KFD by solving the convex
quadratic optimization problem

min [|¢]* + CP() @)
with

¢=y— (Ka+1b) ®)
and subject to the conditions

116=0, 13£=0 ©)

with 1; = max(—y,0) and 12 = max(y, 0). C is a regularization
constant which is still mandatory due to the equivalence to KFD.

P is a regularization functional, typically P(c) = ||c||?. Thus the
smaller C' the tighter the solution « is allowed to fit the training data.

To decrease computational complexity, a sparse solution o is
desired but not generally given. However, a sparse approximation
to the complete solution can be achieved iteratively, e. g. using the
greedy algorithm described in [12].

2.2. Support Vector Machines

We only give a brief overview; further information can be found in
e.g. [13, 14].

Given a training set {x;,y;} of M samples x; € R" and cor-
responding labels y; € {—1,1}, a kernel function k(z,z’) and a
regularization parameter C (see below), the SVM finds a structurally
optimal separating hyperplane in F by finding a vector é:

M M M

1
& = argmax Z @ -y ZZaiajyiyjk(:ci,wj) (10)
o i=1 i=1 j=1
subject to

M
D aiyi =0 (1
i=1

0<; <C Vi (12)

The parameter C' > 0 allows to specify how tightly the SVM is
supposed to match the training data, with a larger C' resulting in a
tighter fit. Due to the restrictions on « given in eq. (11), the solution
of an SVM is sparse for most problems. The threshold b can be
computed afterwards:

1
b= = > (i— Y )My k(@s, ;) (13)
Hi:0<a <C} ie{i0<a;<C} =1

2.3. Probabilistic Output

Essentially, both KFD and SVM produce one-dimensional projec-
tions along a direction of greatest discrimination of the form

M
flx) = Zaik(m,mi) +b (14)
i=1

In the case of the KFD the direction is determined directly, in the
case of the SVM the direction is perpendicular to the separating hy-
perplane.

The problem now is that both KFD and SVM are non-probabi-
listic discriminators. However, for inclusion in an HMM based frame-
work, generative models yielding class-conditional probabilities are
needed.

2.3.1. The KFD case

State-conditional probabilities can be obtained if one assumes p(x|s;) =

p(f(x)]s:). The one-dimensional projections f(a) computed by the
KFD exhibit strong Gaussianity [12] so that a single normal density
function

p(f(@)|si) = N(f(@)|pi, o) (15)

can be fitted to each class’ projection.

If a one-vs-rest setting is used for the binary classifiers, no fur-
ther actions need to be taken. If, however, a one-vs-one binary set-
ting is used, different estimates p;; (f(x)|s;:) of p(f(x)|s;) are com-
puted. Since it is not clear how to combine these different estimates,
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we resort to pairwise coupling using posterior probabilities (cf. sec-
tion 2.3.3).

The posterior probability of state s; given vector  can then be
computed in each binary problem using Bayes’ rule, marginalization
and 1’Hospital’s rule:

p(f(x)]si) Pij(si)
D ceijy PUf(@)[se) Pij(se)

PL,(SL‘CC) = (16)

2.3.2. The SVM case

The projections obtained by evaluating SVMs are not normally dis-
tributed. Instead, the projection densities between the margins, which
is the area of greatest interest, are empirically found to be approxi-
mately exponential: p(f(z)|s;) = e/ (@) =%) [15]. Therefore, the
following model can be applied to estimate posterior probabilities:

1

1 4 eAijf(@)+Bij a7

Pij(silz) =
The same equation is obtained if Gaussian projection-densities with
equal covariance are assumed. The parameters A;; and B;; can
be computed by minimizing a cross-error entropy function using a
model-trust algorithm [15].

2.3.3. Pairwise Coupling

If the binary problems are considered to be one-vs-rest settings, the
posterior probabilities from (16) or (17) can be used directly for pos-
terior probabilities in the multi-class setting. If, however, the binary
problems are one-vs-one settings (which is often done for compu-
tational tractability and prediction performance reason), the multi-
class posterior probability must be computed from the individual bi-
nary posterior probability estimates. An efficient and accurate way
of combining the individual estimates can be found in [16], which
boils down to this formula:

1

P(si|z) =
X Ftey — S 2

(18)

State-conditional probabilities are then obtained using Bayes’
rule:
P(s;|x)P(x)
P(si)

P(silz)

P(a]s:) = o)

19)

The marginal probability P(x) is not easy to determine. However,
it can be neglected in (19) because it does not contribute to the max-
imization w.r.t. w in eq. (1).

3. EXPERIMENTS

3.1. General Setup and Baseline Results

Experiments were carried out on the DARPA Resource Management
(RM1) task [1]. Training was carried out on the 72-speaker training
set. The Oct89 set was used for development testing, model selection
and parameter tuning. All systems were then evaluated on the Feb89
set using the previously determined optimal models.

The training set consists of 2880 sentences. Limited training
data availability was simulated by randomly picking 1/2, 1/4, 1/8,
1/16 and 1/32 of the complete training set. Each random sampling
was repeated 10 times to get reliable results, resulting in 50 sub-
sets of the training data. Each subset was used to train HMMs with

GMMs as emission probabilities with up to 16 mixture components
for monophone models and up to 8 mixture components for cross-
word triphone models. For both modeling schemes the optimal num-
ber of mixture components was determined on the Oct89 set and then
used for evaluation on the Feb89 set. Baseline results can be found
in table 1.

[ HMM | Subset | min [ avg | max [ avg. #mixt. |

Full 93.8 16
172 91.45 | 92.36 | 92.78 15.1
Mono 1/4 89.26 | 90.46 | 91.25 141
1/8 84.26 | 86.15 | 87.62 7.6
1/16 78.45 | 80.34 | 82.66 4.5
1/32 70.40 | 71.91 | 74.00 2.9
Full 96.8 8
172 94.61 | 95.19 | 95.70 6.7
XwrdTri 1/4 91.92 | 92.94 | 93.71 6.3
1/8 85.86 | 88.23 | 89.57 6.3
1/16 78.64 | 81.78 | 83.83 4.2
1/32 68.22 | 70.77 | 72.51 2.7

Table 1. Baseline results using the complete and randomly-sampled
training set for monophone and triphone HMMs using GMMs as
emission probabilities.

3.2. KFD and SVM

Both KFD and SVM based monophone models were evaluated for
the full, the 1/8 and the 1/32 training data sets. In all cases a one-
vs-one binary setting was chosen. For each of the 21 subsets a state-
time alignment was produced using the GMM models optimal on the
Oct89 set. Parameters for normalizing data to mean zero and vari-
ance one were estimated on the respective training subsets and ap-
plied to both training and test data. SVMs were trained using Torch
[17]; for KFDs training, a high-performance BLAS-based training
software was used. Kernel and regularization training parameters
were optimized on the Oct89 set using only one subset for each sub-
set size. Probabilistic interpretors from eq. (15) for KFDs and eq.
(16) for SVMs were fitted using the same respective data sets as for
the classifier training. Transition probabilities were re-used from the
respective GMM trainings in order to keep parameter estimation ef-
fort low and to make results more comparable.

A modified version of HTK [18] utilizing a runtime plug-in li-
brary for external computation of emission probabilities was em-
ployed for recognition assessment. The library, which is common for
KFD and SVM, uses a state-of-the-art XML-based storage scheme
for its parameters which aids in editing and validating the data.

Full details of the recognition results using kernel-based acoustic
models can be found in table 2, while a graphical comparison of

[ Model [ Subset || min | avg | max |
Full 94.21

MonoKFD 1/8 88.79 | 89.41 | 90.33
1/32 76.65 | 78.56 | 80.48
Full 94.58

MonoSVM 1/8 89.38 | 89.94 | 90.98
1/32 78.72 | 81.13 | 82.74

Table 2. Recognition results for monophone HMMs using kernel-
based emission probabilities
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Fig. 1. Comparison of four different methods of acoustic modeling
in relation to the amount of available training material

different methods can be found in figure 1.

From the results it becomes clear that both KFD and SVM out-
perform GMMs as emission probability estimators, independent of
the amount of training material. For subset training it is also par-
ticularly interesting that the worst results obtained using either KFD
or SVM are still better than the best results obtained using GMMs.
Also, when training data is limited, monophone HMMs with KFD-
or SVM-based emission probabilities surpass triphone HMMs which
are otherwise superior to monophone HMM s in almost all cases.

The good generalization performance of kernel-based emission
probabilities becomes even more evident when the relative gain in
Word Error Rate is evaluated. Table 3 summarizes the results.

[ Subset size | MonoKFD | MonoSVM |

1/1 6.5% 12.9%
1/8 23.5% 27.4%
1/32 23.7% 32.8%

Table 3. Average relative gains in Word Error Rate using kernel
methods compared to GMMs

4. CONCLUSION

This paper showed that probabilistically interpreted Kernel Fisher
Discriminants and Support Vector Machines can be used for mod-
eling emission probabilities in HMM-based speech decoders. For
the same HMM scheme they outperform Gaussian Mixture Models
in all cases. The good generalization performance of the KFD and
SVM leads to greatly improved recognition performance especially
if only limited training material is available.

Future work will concentrate on evaluating KFD and SVM as
emission probabilities for triphone HMMs, for larger problems and
under different mismatch conditions, e. g. noisy or otherwise deteri-
orated acoustic conditions.
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