
PATTERN-BASED DYNAMIC COMPENSATION TOWARDS ROBUST 

SPEECH RECOGNITION IN MOBILE ENVIRONMENTS 

Huayun Zhang  Jun Xu 

R&D Department, InfoTalk Technology, Singapore 
{huayun.zhang, jun.xu}@infotalkcorp.com

ABSTRACT

Today, the high mobility provided by wireless networks places 

users in a wild variety of noise and channel conditions, which 

poses serious challenge to telephone-base Acoustic Speech 

Recognition (ASR). In this paper, we propose a Pattern-based 

Dynamic Compensation (PDC) scheme to improve the robustness 

of ASR in mobile environments. In PDC, a distortion pattern-set is 

employed to normalize the environmental variations in training 

data according to a set of pre-defined application scenarios. At 

recognition time, instantaneous distortion is calculated as a linear 

combination of several possible patterns. To online estimate the 

combination weights robustly, a Bayesian learning process with 

Speech-conditioned Prior Evolution is introduced into PDC (PDC-

SPE). In outdoor experiments, the PDC-SPE method outperforms 

other commonly used compensation/adaptation methods and leads 

to 20~25% relative reduction in Word Error Rate (WER) over a 

well-trained baseline system.  

1. INTRODUCTION

The accuracy of ASR systems degrades evidently when 

noise/channel mismatch exists between training and testing 

conditions. In the case of mobile environments, the performance 

degradation becomes even more serious since both background 

and channel characteristics change every so often. The changing 

environment causes varying mismatch between feature domain and 

model distribution. Another principal source of degradation in 

mobile environments is the presence of coding-decoding (codec) 

processes in wireless links. The distortion introduced by codec can 

be considered as an additive non-stationary noise, which is a 

function of the speech signal itself. However, since most modern 

speech codecs are fairly complex, their effect on the original 

speech signal is difficult to model analytically [1]. 

In recent years, many studies have focused on improving ASR 

robustness for mismatch conditions. These methods could be 

divided mainly into two classes: one, to compensate the 

contaminated feature space before classification; second, to adapt 

the parameters of acoustic model to match degraded speech. In the 

first class, Cepstrum Mean Normalization (CMN) and RASTA 

filtering [2] could effectively remove channel effects with very 

low computational cost. For some complex methods, such as 

Signal Bias Removal (SBR) [3] and Stochastic Matching (SM) [4], 

the filtering effect is calculated more precisely through an optimal 

estimation with some kind of prior knowledge about speech. 

However, all these methods have the stability and linearity 

assumptions about working conditions, either explicitly or 

inexplicitly. Neither the time-variant factors nor the inevitable 

nonlinear effects in mobile environments are taken into account. 

The second class includes linear transform-based methods (such as 

MLLR [5]), Bayesian learning methods (such as Maximum A 

Posteriori, MAP [6]) and model composition methods (such as 

Parallel Model Combination, PMC [7]). Since telephone-based 

applications must be able to adapt to a new environment with very 

small amount of data, MLLR with complex parameterization can 

hardly achieve satisfying performance. It is even more difficult for 

MAP. Since MAP could only adapt those observed models, it 

needs relatively more data to perform well. PMC requires 

appropriate statistics of noise. Hence, it is inappropriate when 

environment characteristics are unknown or continually changing. 

In our previous study [8], it is assumed that the non-speech 

variations due to environmental effects change slower than the 

variations of speech signal. Through stochastic matching between 

degraded speech and model distributions within a shifting short 

duration, instantaneous non-speech variations could be unveiled 

and removed from degraded feature domain. In that case, ASR 

accuracy is improved substantially. However, the sparse data 

problem due to short-time analysis makes it difficult for this 

method to maintain a stable performance. We have to make a 

trade-off carefully between reliability and effectiveness.

In this study, a distortion pattern-set is calculated in the training 

phase to describe the mismatch between typical application 

scenarios and acoustic model distributions. It is easier and more 

reliable to implement scenario-oriented compensation than to 

estimate instantaneous distortions from the ground up with very 

limited data. If we expect to deal with various types of possible 

mismatches in practice, an optimal combination across possible 

patterns using Bayesian learning mechanism is necessary. It is 

important to find appropriate prior information for attaining better 

performance in various cases.  

In the next section, we briefly review the short-time learning 

scheme of [8]. Then, we focus on PDC. A Bayesian learning 

method is developed to calculate the combination weights in PDC. 

Furthermore, an incremental prior weight evolution scheme is 

introduced into the learning process. Section 3 is about exploring 

the scenario-oriented distortion patterns and associated prior 

weight distributions. The experiments and discussions are 

represented in section 4. We sum up conclusions in section 5. 

2. PATTERN-BASED DYNAMIC COMPENSATION 

In mobile environments, additive noise (from background) and 

convolutional noise (from channel) corrupt speech signal 

simultaneously and introduce a time-variant bias in cepstral 

domain. Since instantaneous distortion is a blend of various 

degrees of noise effect, channel effect and even the speech itself, 

this changing bias can be denoted as a joint function below: 

tttt HNXf ,,b            (1) 
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where
tX ,

tH  and 
tN  denote speech, filter and noise respectively.  

2.1. Codebook Dependant Channel Estimation-CDCE

Through maximizing the likelihood of noisy data with respect to 

clean model, CDCE can calculate a changing environmental 

distortion. The statistics of speech is modeled by a codebook: 
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where M is the code number. Each code is a N -mixture normal 

distribution. nm, , nm,µ , and nm,  represent mixture weight, 

mean and covariance matrix, respectively. O  denotes the 

observations that fall in current analysis duration:  
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A stochastic matching between O  and  is conducted to 

maximize the likelihood: 
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An iterative solution for this problem could be obtained by 

Expectation-Maximization (EM) method: 
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where jnm ,,  is the occupational probability of Gaussian nm,

at time j with the distortion assumption of previous iteration
1i

tb .

2.2 Pattern-based Dynamic Compensation (PDC)

Given the joint distribution of 
tX ,

tN  and
tH , the distortion can 

be calculated as integration over the whole random space. 

ttt HNX
tttttttttt dHdNdXHNXHNXf

,,
,,,,b   (6) 

Since the number of distortion value 
ttt HNXf ,,  is not 

countable and the continuous joint density 
ttt HNX ,,  is not 

available in real life, the integration has to be approximated over 

finite representative points: 
R

r

trrrrt PHNXf
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A pre-calculated pattern-set is employed to describe the distortion 

at the typical 
rrr HNX ,,  points for mobile applications: 

rrrrR HNXfwhere ,,,,, 21 bbbbB          (8) 

A time-variant vector is employed to denote the instantaneous 

weight factors for these patterns: 

trrt

T
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Given the prior distribution of t , instantaneous distortion can be 

estimated by optimal matching between noisy data and the patterns:

ttM PP
t
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For simplicity, a prior normal distribution is assumed here: 

,t            (11) 

The iterative solution is as follows: 
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where  is introduced to adjust the contribution of prior 

information. When is set to zero, (13) becomes ML estimation. 

 is adjusted by the data size available in real applications.  

The probability constraints 10
1

R

r

rr and  are not 

required for the iterative weight calculation in (13). In order to 

guarantee the reliability, should be set relatively larger. 

2.3. Dynamic Weight Interpolation (DWI) 

The calculation of (12) causes no trouble for server-based ASR. 

However, computation and memory demands prohibit its use on 

low–power portable devices. In these cases, a simple weight 

interpolation method based on speech-conditioned prior distortion 

is adopted. Given the marginal density of 
tX , the instantaneous 

distortion can be denoted as integration over speech space.  
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An appropriate approximation of this integration is the sum of 

conditional expectations of 
tb  given 

m
. If the conditional 

expectations of 
tb  at these given points could be denoted as: 

mMM where BbbbbB m21 ,,,       (14) 

, the instantaneous distortion can be calculated as: 
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where m  is the conditional weight-expectation at given points 

m
. The instantaneous weights on B  can be calculated as a linear 

combination of these pre-calculated weight-expectations: 
M

m
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2.4. PDC with Speech-conditioned Prior Evolution 

(PDC-SPE)

Due to the insufficient observations in short-time analysis, the 

calculation of PDC is heavily dependent on prior distribution. In 

the discussion of 2.2, a fixed single Gaussian is assumed for the 

prior weight distribution. This crude assumption prevents PDC 

from obtaining good performance in experiments.
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In previous studies [9,10], through specifying the prior density as a 

more informative conjugate prior, a reproducible prior/posterior 

pair can be derived analytically. Different from those complex 

methods, a speech-conditioned prior evolution scheme is 

introduced to PDC. The time-variant average weights of DWI can 

be plugged into (12) in place of the fixed prior weight-expectation 

. Alternatively, an accumulated weight-interpolation is used: 
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The instinctive purpose of this method is to incrementally adapt 

the initial weights to trace the newest scenario changes. Since the 

prior evolution works on incremental mode, no need to store 

previous consecutive data as in short-time based methods. This is 

equal to adjusting the prior mean vector of (11) according to 

different speech segments, while the prior-variance-matrix is kept 

unchanged. For this new method, incrementally refreshed prior 

statistics and the data of current window jointly contribute to the 

estimation of instantaneous distortion.

3. SCENARIO-ORIENTED PRIOR INFORMATION 

For the Bayesian learning, appropriate prior statistics is quite 

crucial. For the proposed methods in the previous part, there are 

two kinds of prior information that should be pre-calculated in the 

training phase: first, the distortion pattern-set and second, the 

initial weights on these patterns. 

The pattern-set can be derived through data-driven approach, 

whereas incorporating some expert scenario-classification would 

be helpful. The following four conditions have been chosen as 

representatives of mobile environments: 

(i) Indoor environment (Home/office); 

(ii) Public place (background noise); 

(iii) Pedestrians by road side/at bus stop;  

(background traffic noise) 

(iv) Passengers in moving cars, railways, buses, etc. 

(background traffic noise and engine noise) 

It is practically impossible to consider more than the above four 

acoustic conditions. Any further differentiation would only deliver 

sparse observations of training data. There is about an hour’s data 

in each pre-defined scenario collected and transcribed by hand. 

Supervised MLLR with a global bias transform is conducted on 

utterance level to calculate environmental distortions. The average 

distortions in power spectrum are depicted in figure (1). 
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Figure (1). Distortion patterns in power spectrum 

The initial weights for these patterns are accumulated by their 

occupational counts across all training data, in which most 

utterances have no information about recording environments. 
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where trnm ,,,  is the post probability of single Gaussian 
nm,
 on 

observation to  with the scenario assumption rb . And speech-

conditioned initial weights at given points 
m

 are accumulated on 

corresponding observations: 
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In Figure (1), it should be noted that while the average distortion is 

neglectable (see the faded line), the distortion of each single 

pattern couldn’t be neglected (see the solid lines). This implies that 

severe phase distortion exists among these distortions. Phase-

frequency analysis reveals that it is caused by the so called 

“dispersion effect” among these patterns. Thus, the scenario-

specific information is masked in acoustic model if we pool 

training data from different scenarios. Since it is uneconomic and 

pointless to train scenario-specific models for different 

applications, pattern-based compensation is the feasible solution. 

4. EXPERIMENTS AND DISCUSSIONS

The recognizer used throughout our experiments is the InfoStar3.0, 

InfoTalk’s multilingual ASR system especially designed for DSR 

applications. The 39-dimension front-end consists of 12 ACELPC 

(the Algebraic Code Excited Linear Prediction Coding 

recommended by ETSI for 3G networks, [11]) cepstral, cepstral 

energy and their first and second order derivatives. It is a 

phonetically mixture-tied system. Hundreds of hours of speech 

data, both “clean speech” collected indoors and “noisy speech” 

collected outdoors, are used for acoustic training. To compress the 

memory size for real applications, a within-syllable tri-phone 

structure is adopted for acoustic modeling. The acoustic model for 

each language contains more than 15,000 Gaussians. 

Some prevailing methods for noisy speech recognition and 

different versions of PDC are investigated in this comparison: 

1. CMN, which serves as the baseline; 

2. RASTA introduced in [2]; 

3. SM introduced in [4]; 

4. MLLR1, unsupervised mean-adaptation with a global 

block-diagonal matrix transformation; 

5. MLLR2, unsupervised mean-adaptation with 5 block-

diagonal matrices transformation; 

6. MLLR3 unsupervised mean-adaptation with 10 block-

diagonal matrices transformation; 

7. MAP introduced in [6]; 

8. PDC-LI, PDC with Language-Independent initial weights. 

The numerator and denominator in (18) are summed across 

all training data regardless of language attribute; 

9. PDC-LD, Language Dependent PDC. Language-specified 

initial weights are calculated only using the data from 

corresponding language. 

10. PDC-SPE, PDC with Speech-conditioned Prior Evolution.  
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Two language-dependant tasks are investigated separately.  

A. Name Dialing Task (in Mandarin)

It contains 500 Chinese Names. Name length varies 

between 2~4 Mandarin syllables. 

B. Command & Control Task (in English)

It contains about 500 commonly used phrases and words for 

grammar-based command and Control applications. 

Test data are collected through full rate GSM phones in outdoor 

environments. Each test-set contains 2,000 utterances from 50 

callers (half from males, half from females). All callers are native 

speakers. Since some methods in comparison (MLLR and MAP) 

need extra data for adaptation. Five utterances from every caller 

are excluded from the testing-sets to serve as adaptation data.  

Among the three MLLR methods, MLLR2 has an obvious 

improvement. More complex transformation shows no obvious 

advantage. Those unseen models in adaptation data limit the 

performance of MAP. PDC-LD outperforms PDC-LI obviously. 

This reveals that distortion has close relations with the language 

information (or the speech signal). It is this finding that prompted 

us to integrate speech-conditioned prior knowledge with PDC.

The new PDC methods are quite flexible that only R weights need 

to be adjusted to deal with a wild variety of scenario mismatches. 

Since normally R<<D, which is the feature size, the new method 

has a more simplified parameterization than most of other optimal 

estimation methods for noisy speech recognition. Unlike model 

adaptation, the new method works on testing data itself at run time. 

No extra data for adaptation is needed. It is able to trace the 

changing conditions during recognition. In the above two tasks, 

PDC-SPE provides 26% and 19.5% relative reduction in WER 

over corresponding baseline respectively. With respect to MLLR2, 

PDC-SPE achieves a relative improvement of 15% in WER.

Compared with adaptive model combination [12], the new 

proposed method is easier to implement since the scenario-oriented 

distortion patterns require fewer training data. It is economic in 

computation and memory considerations. 

Within the scope of this study, the instantaneous distortion is 

calculated as a time-variant combination of the pre-calculated 

patterns. Since the major part of environmental effects is kept in 

the pattern-set and intact throughout the calculation, the online 

adjustment of combining weight is not enough to reflect serious 

variations. If the working scenario is far from those within the 

pattern-set, we hardly expect that the new method could perform 

as well as it is in this experiment. How to deal with unseen 

scenarios is still our future work.

5. CONCLUSIONS

Obstacles to robust speech recognition in mobile environments 

include acoustical degradations produced by additive noise, 

channel filtering, nonlinearities in coding/decoding, as well as 

impulsive interfering sources. While it is difficult to tackle such a 

wild range of degradations with limited data, it is feasible to 

compensate the degraded speech with some prior distortion 

knowledge from similar applications. In this study, the PDC 

method is proposed to estimate the instantaneous distortion as a 

time-variant linear combination of several distortion patterns, 

which are calculated in training phase to represent environmental 

characteristics of typical application scenarios. And PDC-SPE, the 

enhanced version of PDC with speech-conditioned initial weight 

evolution, shows obvious advantage over previous methods.
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