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ABSTRACT

This paper proposes a novel model compensation method for a ro-
bust feature extraction technique based on SNR-dependent Nonuni-
form Spectral Compression (SNSC). The SNSC method is a spec-
tral transformation which resembles human’s intensity-to-loudness
conversion and de-emphasizes the contributions from noisy spectral
components to features. In this paper, we propose a new compressed
mismatch function which models the effect of the noise onto the
clean speech in the Log-spectral domain together with the SNSC.
Based on this mismatch function, a new model compensation pro-
cedure is derived. The procedure needs a compensated model of no
compression to start with. It is shown that the new model compen-
sation using the Vector Taylor Series method (VTS) for the compen-
sated uncompressed model, remarkable recognition performances at
low signal-to-noise ratio (SNR) can be obtained for different additive
noises at the expense of slight increase in the computational com-
plexity in comparison with the VTS.

1. INTRODUCTION

In recent years, the problem of achieving robust speech recognition
in noisy environments has aroused many interests. However, drastic
degradation of performance occurs when recognizers operate under
noisy environments owing to the mismatch between the trained mod-
els and testing features. Solutions to this problem can be generally
divided into three categories: inherently robust feature representa-
tion, speech enhancement scheme, and model-based compensation.
Details of these approaches are reviewed in [2] and the references
therein.

Our previous work [1] presents a new noise-resistant features
by employing SNR-dependent Non-uniform Spectral Compression
scheme (SNSC), which compresses the noisy spectral components
of the corrupted speech signal with an SNR-dependent root value.
It is shown that the SNSC-derived MFCC features outperform the
conventional MFCC features and cubic-root compressed features [1]
substantially. In SNSC, the compressed speech spectrum in the Lin-
ear domain, Ÿk, is obtained as:

Ÿk = Y αk
k , 0 ≤ αk ≤ 1 (1)

where Yk is the kth spectral component of uncompressed spectrum,
and αk is the compression root which is a function of band SNR

The work described in this paper was fully supported by a grant from
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for the kth filter band. However, since αk is SNR-dependent, the
power spectrum of the noise is required in the training session for
finding αk for a particular noise type and a specified SNR. How-
ever, the noise type and SNR of the testing environment are gener-
ally unknown. Thus the models estimated by training in this way
have limited usage because they could only be applied for a recogni-
tion task under the same SNR and noise environment. To solve this
drawback, this paper presents a novel compensation procedure to
compensate the clean-data-trained models for SNSC-features in var-
ious noisy environments of different SNR. In this scheme, it needs a
compensated model of no compression, which can be obtained from
any known model compensation methods. In this paper, we adopt
the Vector Taylor Series (VTS) method [3] for the compensated un-
compressed model. This new recognition scheme provides notice-
able performance at low SNR and improvement over those systems
compensated by the VTS method. We call our scheme as the Model
Compensation for SNR Non-uniform Spectral Compression (MC-
SNSC).

The structure of this paper is as follows. Firstly, the SNSC
method is briefly reviewed in Section 2. In Section 3, we will in-
troduce the MC-SNSC model compensation. Experimental results
along with discussion are then presented in Section 4. Our conclu-
sion on this study will be given in the final section.

2. SNR-DEPENDENT NON-UNIFORM SPECTRAL
COMPRESSION (SNSC)

Motivated by the partial masking effect imposed by the background
noise on perceived loudness, SNSC gives a small compression root
value to de-emphasize those speech components that are of low SNR.
The procedures to obtain SNSC-derived MFCC features is presented
in figure 1. After obtaining the output energies of Mel-scale band-
pass filters, spectral compression is carried out as in (1). The core
of the SNSC method lies in defining the compression function αk,
which depends on the band SNR. With a slight modification from
[1]1, αk is defined as:

αk = (1 − A0)(1 − e
−[log(

Yk
Ñk

)−β]/γ
)

·u(log(
Yk

Nk
) − β) + A0 (2)

where A0 is the floor compression root, β is the cutoff band SNR
to function as the just-audible threshold, γ is the gain to control the

1The definition of SNR in this work is different from the work [1].
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Fig. 1. Procedure of the SNSC scheme

steepness of compression function, and u(·) is a unit step function.
This equation can be explained with the partial masking effect of
background noise on perceived loudness as discussed in [1]. αk is
dependent on the band SNR, log(Yk/Nk). For small band SNR,
equation (2) yields a small value to αk.

In this paper, we assume that the background noise is additive
and independent from the speech, and each Mel-band signal is also
independent from each other. The mismatch function Yk of the kth

Mel-filter is modelled as the sum of the noise energy Nk and the
clean speech energy Xk in the Linear-spectral domain and expressed
as

Yk = Xk + Nk (3)

If define the variables in the Log-spectral domain as Xl
k = log(Xk)

and N l
k = log(Nk), then the mismatch function in the Log-spectral

domain is expressed as

Y l
k = log(eXl

k + eNl
k) (4)

Thus the compressed mismatch function for the SNSC in the Log-
spectral domain is expressed as

Ÿ l
k = αkY l

k (5)

= αk log(eXl
k + eNl

k) (6)

where

αk = (1−A0)(1− e−(Y l
k−Nl

k−β)/γ) ·u(Y l
k −N l

k −β)+A0 (7)

The compressed mismatch function as described in equation (5) is
an expression relating the effect of the noise onto the clean speech
with the SNSC.

In this paper the notation for the description of domain is defined
as follows. The superscript l means the Log-spectral domain. When
parameters have no superscript, they are in the Linear-spectral do-
main. The model parameters of the background noise model and the
noise-corrupted speech model are capped with˜and ,̂ respectively.

3. MODEL COMPENSATION FOR SNSC (MC-SNSC)

Figure 2 shows the general framework of the MC-SNSC recognition
system. During the feature extraction in the testing phase, the SNSC
scheme as described in (1) is used to compress the output energy of
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Fig. 2. Processing stages for MC-SNSC

each filter band. The clean model is combined with the noise model
together with the SNSC to construct the corrupted speech model to
recognize the SNSC-features.

In the MC-SNSC scheme, we let the first order time derivative of
the static features be the delta features. Using (5) and (7), the delta
feature of the compressed mismatch function can be expressed as

∆Ÿ l
k = ∆(αkY l

k) =
d(αkY l

k)

dt

= A0
∂Y l

k

∂t
+ (1 − A0){[(1 − e−(Y l

k−Nl
k−β)/γ)

∂Y l
k

∂t

+
1

γ
e−(Y l

k−Nl
k−β)/γY l

k(
∂Y l

k

∂t
− ∂N l

k

∂t
)]

·u(Y l
k − N l

k − β) + (1 − e−(Y l
k−Nl

k−β)/γ)

·Y l
k · δ(Y l

k − N l
k − β) · (∂Y l

k

∂t
− ∂N l

k

∂t
)} (8)

where δ(·) is the Dirac-delta function.
By employing the the compressed mismatch functions, (5) and

(8), and Gaussian-Hermite numerical integration, we derive a pro-
cedure of computing the parameters of the MC-SNSC compensated
model in the following subsections.

3.1. Mean Compensation

Using the compressed mismatch function described in (5), the mean
of the static SNSC-feature in the Log-spectral domain is given by

µ̂l
Ÿk

= µ̂l
(αY )k

= E{αkY l
k}

= (1 − A0) · (E{Y l
k · u(Y l

k − N l
k − β)}

−E{e−(Y l
k−Nl

k−β)/γY l
k · u(Y l

k − N l
k − β)})

+A0E{Y l
k} (9)

We define

g(γ) = E{e−(Y l
k−Nl

k−β)/γY l
k · u(Y l

k − N l
k − β)} (10)

Then
µ̂l

Ÿk
= (1 − A0) · [g(∞) − g(γ)] + A0 · µ̂l

Yk
(11)

where

g(γ) = e
Φ+Ψ/(2γ)

γ · [ Σ̂l
Ykk√
2πΨ

e−
[Φ+Ψ/(2γ)]2

2Ψ + Ω · Sum(γ)] (12)
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Sum(γ) ∼= 1

2
− 1

2
√

π
·

n∑
i=1

ωi ·erf(

√
Σ̃l

Nkk√
Σ̂l

Ykk

ti +
Φ + Ψ/γ√

2Σ̂l
Ykk

) (13)

where Φ = µ̃l
Nk

− µ̂l
Yk

+ β, Ψ = Σ̃l
Nkk

+ Σ̂l
Ykk

, and Ω = µ̂l
Yk

−
1
γ
Σ̂l

Ykk
. erf(·) is the error function. ti and ωi are respectively the

abscissas and the weights of the nth order Hermite integration [4].
We assume the background noise to be stationary. The mean

of the delta features of the noise can be approximately set equal to
zero. Using the compressed mismatch function for delta features in
(8), the mean of the delta SNSC-features is obtained as

µ̂l
∆Ÿk

= µ̂l
∆(αY )k

= E{∆αkY l
k}

= A0µ̂
l
∆Yk

+ (1 − A0)E{[1 − e−(Y l
l −Nl

k−β)/γ

+
1

γ
e−(Y l

k−Nl
k−β)/γY l

k ]

·u(Y l
k − N l

k − β)}µ̂l
∆Yk

(14)

We define

h(γ) = E{e−(Y l
k−Nl

k−β)/γ · u(Y l
k − N l

k − β)} (15)

Then

µ̂l
∆Ÿk

= {A0 + (1 − A0)[h(∞) − h(γ) +
1

γ
g(γ)])}µ̂l

∆Yk
(16)

where

h(γ) = e
Φ+Ψ/(2γ)

γ · Sum(γ) (17)

3.2. Variance Compensation

The covariances of the compressed mismatch function in the Log-
spectral domain are given by

Σ̂l
Ÿkl

= Σ̂l
(αY )kl

(18)

= E{(αkY l
k) · (αlY

l
l )} − E{αkY l

k}E{αlY
l

l }

The diagonal elements of the covariance matrix can be calcu-
lated as

Σ̂l
Ÿkk

= Σ̂l
(αY )kk

= (1 − A0)
2E{Y l2

k · u(Y l
k − N l

k − β)} − 2(1 − A0)

·E{e−(Y l
k−Nl

k−β)/γY l2

k · u(Y l
2 − N l

2 − β)} +

(1 − A0)
2E{e−2(Y l

k−Nl
k−β)/γY l2

k u(Y l
k − N l

k − β)}
+A2

0E{Y l
k · u(Y l

k − N l
k − β)} − µ̂l2

Ÿk
(19)

We define

f(γ) = E{Y l2

k e−(Y l
k−Nl

k−β)/γ · u(Y l
k − N l

k − β)} (20)

Then

Σ̂l
Ÿkk

= (1 − A2
0)f(∞) − 2(1 − A0)f(γ) + (1 − A0)

2

·f(γ/2) + A2
0(µ̂

l2

Yk
+ Σ̂l

Ykk
) − µ̂l2

Ÿk
(21)

where

f(γ) = e
Φ+Ψ/(2γ)

γ · [ Σ̂l
Ykk√
2πΨ

(Σ̂l
Ykk

Φ/Ψ + 2µ̂l
Yk

− Σ̂l
Ykk

/γ)

·e− (Φ+Ψ/γ)2

2Ψ + (Σ̂l
Ykk

+ Ω2)Sum(γ)] (22)

For off-diagonal elements of the covariance matrix, the compu-
tations involve a set of two dimensional Gaussian-Hermite numerical
integrals. To reduce the computational complexity, the off-diagonal
elements are approximated as

Σ̂l
Ÿlk

= Σ̂l
(αY )lk

≈ λlkE{αl}E{αk}Σ̂l
Ylk

(23)

where
λlk = λkl =

√
ρkkρll (24)

and
ρkk = Σ̂l

Ÿkk
/Σ̂l

Ykk
(25)

λlk is the scaling factor to make the off-diagonal elements keeping
up with the corresponding diagonal elements.

Similar to the approach for estimating the static variance of the
compressed mismatch function, the diagonal elements of the covari-
ance matrix of the delta model can be calculated by

Σ̂l
∆Ÿkk

= [A2
0 + (1 − A2

0)h(∞) − 2(1 − A0)h(γ)

+(1 − A0)
2h(γ/2) +

2(1 − A0)

γ
g(γ) (26)

−2(1 − A0)
2

γ
g(γ/2) +

(1 − A0)
2

γ2
f(γ)]

·(Σ̂l
∆Ykk

+ µ̂l2

∆Yk
) +

(1 − A0)
2

γ2
f(γ/2)Σ̃l2

∆Nkk

−µ̂l2

∆Ÿk

and the off-diagonal elements as

Σ̂l
∆Ÿlk

= Σ̂l
∆(αY )lk

≈ λ
′
lkE{αl}E{αk}Σ̂l

∆Ylk
(27)

where

λ
′
lk = λ

′
kl =

√
ρ
′
kkρ

′
ll (28)

and
ρ
′
kk = Σ̂l

∆Ÿkk
/Σ̂l

∆Ykk
(29)

3.3. Solution for Non-compressed Corrupted Model

The above model compensation equations show that a non com-
pressed corrupted speech models (µ̂l

Yk
,Σ̂l

Ykl
) and (µ̂l

∆Yk
,Σ̂l

∆Ykl
) are

required in the MC-SNSC model compensation process, which can
be obtained from any model compensation methods. We employ
the VTS [3] method to obtain the non-compressed corrupted speech
models.

4. EXPERIMENTAL RESULTS

Isolated digits from the AURORA Project Database 2.0 [5] is used
for the evaluation of the proposed MC-SNSC approach. There are
2412 utterances for clean training, with 110 speakers uttering each
digits twice. For the testing, data corrupted with Car noise, Exhibi-
tion noise and Suburban Train noise from the test set of the AU-
RORA are used (around 300 utterances for each noise and each
SNR). For the matched case, the noisy training data were generated
by adding the noise to the clean training data at various global SNR.
The length of the analysis frame (windowed by Hamming weights) is
25ms, and the frame rate is 10ms/frame. The feature vector is com-
posed of static feature and its first derivative, each has 13 cepstral
coefficients.

A word based HMM with six states and four Gaussian densities
per state is used as the recognizer. In the training mode, we train
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Table 1. Recognition Rate (%) of various Model Compensation
Methods For Car Noise (A0 = 0.7, γ = 1, β = −0.2).

SNR/dB Mismatched Matched VTS-1 MC-SNSC
Clean 98.57 98.57 98.57 98.57

20 84.68 98.39 96.28 96.93
15 71.33 97.74 95.05 96.02
10 40.74 96.09 92.74 94.81
5 27.93 95.65 88.79 89.91
0 20.10 87.14 70.74 80.60
-5 11.01 51.56 36.93 58.15

Average
between 19.68 78.12 65.49 76.22

-5 and 5dB

Table 2. Recognition Rate (%) of various Model Compensation
Methods for Exhibition Noise (A0 = 0.85, γ = 1, β = 0).

SNR/dB Mismatched Matched VTS-1 MC-SNSC
Clean 99.62 99.62 99.62 99.62

20 64.46 96.76 95.39 95.03
15 39.12 94.97 94.01 94.21
10 20.70 94.63 91.26 90.28
5 16.11 89.23 84.54 87.30
0 9.82 78.43 61.03 69.32
-5 9.49 51.75 33.11 47.41

Average
between 19.68 73.14 59.56 68.01

-5 and 5dB

the system with the clean speech utterances to produce clean models
except for matched case. In the testing, three other speech recog-
nition methods are carried out for the sake of comparison with our
MC-SNSC. These three methods are the mismatched case without
model compensation, matched case, and the first order VTS method
(denoted as VTS-1).

Experimental results for Car noise, Exhibition noise and Subur-
ban Train noise are shown in Table 1 to 3, respectively. The results
show that the VTS-1 and our MC-SNSC method can achieve good
performance for the three additive noises at low SNR. However, the
MC-SNSC provides better accuracy than the VTS-1 at very low SNR
and gives a performance near to the matched case. Looking at the
recognition rate ”averaged between -5dB to 5dB” for Car noise, the
MC-SNSC has accuracy of 11% (in absolute percentage) more than
the VTS-1. At SNR=-5dB, even MC-SNSC gives a better perfor-
mance than the matched case. For Exhibition and Suburban Train
noise, the performance of using the MC-SNSC method is also better
than that of the VTS-1 at low SNR.

Table 4 lists the number of multiplications, divisions, logarithm
and exponential operations for each technique to update the parame-
ters of a single mixture density, where N and M are the dimensions of
features in the cepstral domain and the Log-spectral domain, respec-
tively. It is shown that the computational complexity of MC-SNSC
is comparable to that of VTS-1 [3].

These experimental results reveal that the new model compen-
sation for the SNSC scheme can deal with different types of additive
noise and yield remarkable recognition performance, which are at-
tributed to the noise-resistant feature extraction (SNSC scheme) [1]
and pertinent model compensation.

Table 3. Recognition Rate (%) of various Model Compensation
Methods for Suburban Train Noise (A0 = 0.85, γ = 1, β = −0.2)

SNR Mismatch Matched VTS-1 MC-SNSC
(dB) Case Case

Clean 99.29 99.29 99.29 99.29
20 68.97 99.38 98.36 98.62
15 43.54 98.28 97.67 96.78
10 22.74 98.21 94.04 94.64
5 12.63 96.22 89.14 91.33
0 8.50 89.05 79.04 84.11
-5 9.09 66.68 54.41 64.07

Average
between 10.07 83.98 74.20 79.84

-5 and 5dB

Table 4. Computation complexity of the mentioned compensation
approach

Method Total M=23, N=13
VTS 2MN(2M+N+3) 43723

+12M2+13M
MC-SNSC 2MN(2M+N+3) 47403

+16M2+(3n+69)M (n=4)

5. CONCLUSION

A novel MC-SNSC technique that provides a model compensation
scheme for the the robust SNSC-feature is presented in this paper.
The compressed mismatch function that models the effect of additive
noise on the spectrally compressed speech features is proposed and
the corresponding model compensation is developed. Experimen-
tal results show that the MC-SNSC can cope with different kinds of
noises and provide a remarkable performance on the recognition ac-
curacy especially at low SNR. Nevertheless, the computational com-
plexity of the new MC-SNSC scheme is comparable to that of the
VTS method.
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