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ABSTRACT
Variance variation with respect to a continuous environment-
dependent variable is investigated in this paper in a variable
parameter Gaussian mixture HMM (VP-GMHMM) for noisy
speech recognition. The variation is modeled by a scaling
polynomial applied to the variances in the conventional hid-
den Markov acoustic models. The maximum likelihood esti-
mation of the scaling polynomial is performed under an SNR
quantization approximation. Experiments on the Aurora 2
database show significant improvements by incorporating the
variance scaling scheme into the previous VP-GMHMM where
only mean variation is considered.

1. INTRODUCTION

In noisy speech recognition, it is well known that the mean
and variance of a Gaussian mixture HMM (GMHMM) vary
with the environment. This can be clearly observed in Fig.1
where the mean (upper panel) and variance (lower panel) of
the Gaussian distribution trained with MFCC features vary
over signal-to-noise ratio (SNR). Hence, the acoustic mod-
els have to be adapted to a particular environment in order to
achieve good performance [1][2].

In [3], a variable parameter GMHMM (VP-GMHMM)
is investigated where the variation of the mean of Gaussian
is modeled by a polynomial over a continuous environment-
dependent variable and the variance remains constant. Sig-
nificant improvements have been reported in literature such
as [4] and [5] when variance variation is considered in noise
robust speech recognition. In this paper, the variation of the
variance of Gaussian is modeled in the previous VP-GMHMM
framework. Therefore, instead of a constant Gaussian vari-
ance trained and applied, both mean and variance change with
the environment in the VP-GMHMM discussed in this paper.

The remaining of the paper is organized as follows. In
Section 2, a polynomial variance scaling approach is intro-
duced and the maximum likelihood (ML) estimation of the
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Fig. 1. Variation of the mean (upper panel) and variance
(lower panel) (

� � � � � � � � � � � � � � � � � � � � �
) against SNR for

the first state of the /ah/ sound of female speakers with MFCC
features.

polynomial by an SNR quantization scheme is described in
Section 3. Experimental results are shown in Section 4 and
finally a summary is given in Section 5.

2. POLYNOMIAL VARIANCE SCALING IN
VP-GMHMM

In a conventional Gaussian mixture HMM (CV-GMHMM)
each state has a multivariate Gaussian mixture distribution:

	 
 � �  � � � � � � � � � � � � � � 
 � � � (1)
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where

� � � � � � � � � � � � � � � � � � � � � is the � th multivariate Gaus-
sian mixture in state 	 with weight 
 � �

, and
� � �

and
� � �

are
the mean and covariance associated with it. Typically,

� � �
is

assumed diagonal.
In the VP-GMHMM discussed in [3], the mean vector

� � �
in Eq. 1 is described as a � -th order polynomial function of a
environment-dependent scalar variable � :

� � � � � � �
�

�� 	 
 � � � � � � �
where � �� � � �  � �� � 
 � �    � � �� � � � � � are the coefficients of the
mean polynomial and � is the feature dimension.

In this paper, the variance variation is taken into account
by a polynomial scaling factor applied to the original vari-
ances which can be written as:� � � � � � � � � � � � 
 � �

(2)

where
� 
 � �

is the original diagonal covariance matrix and the
scaling matrix � is a diagonal matrix with scaling factors
along the principal diagonal:���� � � �� � � � � �  � � ! �

. . . � � �� � � � ��  " � ! �
# $$%

In Eq. 2, the scaling factor is a polynomial of the environment� and the exponential form guarantees the positiveness of the
variance. One of the advantages of employing a variance scal-
ing polynomial rather than modeling the variance itself by a
polynomial is that the variance scaling polynomial gives flex-
ibility of tying at various level of granularity.

3. ESTIMATION OF VARIANCE SCALING
POLYNOMIAL

If no variance variation is considered, as in [3], a constant
variance is trained in the VP-GMHMM. In this case, the co-
variance matrix, instead of the scaling matrix, is estimated
and we can readily have the re-estimation formula as:

� � � �

&
�' 	 �

� (� � 	 � ) '
� � 	 � � � � �

'
� * �

�� 	 
 � �� � � � �' � � �
'

� * �
�� 	 
 � �� � � � �' � �&

�' 	 �
� (� � 	 � ) '

� � 	 � � �
(3)

where ) '
� � 	 � � � � � � �

'
� � 	 � + '

� � � � , '
� - � is the probability

of being in state 	 mixture component � at time . given the/ -th utterance �
'

� and previous model parameters
-
. 0 is the

number of utterances and 1 '
is the number of frames in the/ -th utterance.

If the scaling matrix � is applied to the original covari-
ance matrix, the ML estimation is performed over the diag-
onal elements of � . Since diagonal covariance matrices are
employed in this paper, the multivariate Gaussian PDF is sim-
ply the product of the univariate Gaussian PDF of individual
dimensions. For the simplicity of mathematical derivation,
the estimation of the scaling matrix is carried out accordingly
dimension by dimension.

Rewrite the Gaussian mixture PDF as

� � � � �
'

� � �
�23 	 � 45 6 7 8 9� � 3 � � �� � � � ��  : � ! �( � ; < = (> : ? @ �  : < A ( B B CC D E C�  : F G �� � � H ��  : � A �(

The ML estimation of the coefficients of the variance scaling
polynomial can be performed using the EM algorithm [6] by
defining the auxiliary I -function as

I J � - � - � �
&

�' 	 � �� K L M �� K L N � (� � 	 � ) '
� � 	 � � �  O P Q � � � � �

'
� �

�
&

�' 	 � �� K L M �� K L N � (� � 	 � ) '
� � 	 � � � �

�3 	 �  O P Q 4R 6 7 S O P Q 48 9� � 3 S O P Q 45 � � �� � � � ��  : � ! �(* � T '
� 3 * U � � 3 � � ' � � 96  8 9� � 3  � � �� � � � ��  : � ! �( �

Taking the derivative of I J � - � - � over � V � � 3 � and setting to
zero, we get:&

�' 	 � � ; � �W � � � ��  : W ! W(  � �' � (� � 	 � ) '
� � 	 � � �  � T '

� 3 * U � � 3 � � ' � � 98 9� � 3
�

&
�' 	 �

� (� � 	 � ) '
� � 	 � � �  � �' � X � Y � 4 �    � �

which can be written as the following � S 4 simultaneous
nonlinear equations:Z[\ [] ^ 
 � � V� � 3 
 �    � � V� � 3 � � � Y

...^ � � � V� � 3 
 �    � � V� � 3 � � � Y (4)

Theoretically, root finding algorithms can be applied to
Eq. 4 to solve the � S 4 simultaneous nonlinear equations for
the � S 4 unknowns _ � V� � 3 
 �    � � V� � 3 � ` , and obtain the re-
estimation of the � -th order variance scaling polynomial for
the a -th dimension. Practically, it is difficult to find a good so-
lution since the number of summation terms in ^ � depends on
the number of utterances participated in the training and the
algorithms are very easy to get stuck at local minima. There-
fore, certain approximation has to be considered to make the
solution feasible.
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To reduce the number of summation terms, the SNR range
is quantized into � � � values,

� � � � � � � � � �� � �� � � � � � � � � � � �

where � � � 	 � and � 
 � � � � � . This quantization is
based on the assumption that there is no significant difference
among the variances within a reasonable SNR interval.

The quantization converts the � � � simultaneous nonlin-
ear equations in Eq. 4 into � � � simultaneous linear equa-
tions: � � � � � � � � � � � � � � (5)

where

� � � � �
�
�

� � � � � � � � � � � � � � � � � � � � �
...

� � � � � � � � � ...� � � � � � � � � � � � � � � � � � � � �

� �
�

with

� � � � � � � 	 � 
 	� � � � � �  � � � � �

� �	 
 � � �
�


 � � � � � � � � �

 � 	 � � � � � � �� � � �� �� � � � � � �� �

and � � � � � � � � � � � � � � � � � � � � � � � � � � �
with

� � � � � 	 � 
 � �� � � � � �
 � � �
�


 � � � � � � � � �� �

and � � � � � � � � � � � � � � � � � � � � � � � � � � �
with � � � � � 	 � 
  ! " #$ % & ' () * + $ � � $�

From Eq. 5,
� � � � can be obtained as:

� � � � � � ! �� � � � � � � �

After
� � � � are available, , � � � � can be readily resolved from

another linear system equation by taking logarithm.

4. EXPERIMENTAL RESULTS

Experiments are performed on the Set A of the Aurora 2 database.
There are four types of noise in the training and test data of
Set A which include subway, babble, car and exhibition noise.
For each type of noise, training data are recorded under five
SNR conditions: clean, 20 dB, 15 dB, 10 dB and 5 dB while
test data consist of six SNR conditions: clean, 20 dB, 15 dB,
10 dB, 5 dB and 0 dB. There are 8440 utterances in total for
the four types of noise contributed by 55 male speaker and 55
female speakers. For the test set, each SNR condition of each
noise type consists of 1001 utterances and 24024 in total from
52 male speakers and 52 female speakers.

Mel-FrequencyCepstral Coefficients (MFCC) features are
used to train the acoustic models. The frame length is 25 ms
and the frame shift is 10 ms. The speech feature for each
frame contains 12 static MFCCs (excluding C0) plus log en-
ergy (E) and their first and second order derivatives. There-
fore, there are 39 components in each feature vector.

The HMMs adopt a left-to-right topology and are word-
based models with 16 emission states for each digit, 3 states
for the silence model and 1 state for the short pause model.
We investigate cases in which each state has one or two Gaus-
sian mixtures. All the Gaussian mixtures have diagonal co-
variance matrices.

Utterance SNR is chosen as the environmental variable �
and it is estimated by the minimum statistics tracking algo-
rithm proposed in [7]. Both mean and variance scaling poly-
nomials are chosen to be 2nd-order polynomials and the SNR
range is quantized into three levels:

� 	 � � � � � �� �
� � � � -

� � �� � �
� -

� � � � � �� � �

In the training stage, training data are categorized into sev-
eral subsets in terms of their SNRs (e.g. clean, 20dB, 10 dB,
etc.) and CV-GMHMMs are trained for each subset. The
Gaussian means of the same mixture from different subset
CV-GMHMMs are regressed with respect to SNR to obtain
the initial mean polynomials. The mean polynomials are first
estimated without variance scaling and after 25 EM iterations
mean and variance scaling polynomials are joint estimated for
another 2-3 iterations. In the recognition stage, utterance SNR
is estimated for the speech signal and one set of environment-
dependent HMM parameters (Gaussian mixture means and
variances) is instantiated based on the SNR estimate to de-
code the speech signal.

Fig. 2 shows the estimated mean (upper panel) and vari-
ance scaling (lower panel) polynomials of the energy com-
ponent from the first state of digit “oh” for the four types of
background noise from Set A. The HMMs used in the plot
have one mixture per state. It can be observed from the figure
that the polynomials capture the trend of mean and variance
with respect to SNR.

To compare VP-GMHMM and CV-GMHMM, acoustic
HMMs with one and two Gaussian mixtures in each state are
used for the experiments for the four types of background
noise. Table. 1 shows the recognition accuracy averaged
across the four types of noise. The variance scaling poly-
nomials are state-tied. In the table, VP-GMHMM1 stands for
the models that only mean polynomials are applied (Eq. 3
is used for variance estimation) while VP-GMHMM2 for the
models in which both mean and variance scaling polynomials
are used. It can be observed from the table that, both VP-
GMHMM1 and VP-GMHMM2 outperform CV-GMHMM in
all the test conditions. By modeling the variance variation,
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Experimental Conditions

Clean 20 dB 15 dB 10 dB 5 dB 0 dB Ave.

1M (CV-GMHMM) 96.46 96.21 95.38 92.36 83.28 53.18 86.14

1M (VP-GMHMM1) 97.91 97.23 96.29 93.23 85.95 61.77 88.73

1M (VP-GMHMM2) 98.12 97.55 96.86 94.48 88.45 70.38 90.97

2M (CV-GMHMM) 97.89 97.25 96.68 94.81 88.51 64.23 89.89

2M (VP-GMHMM1) 98.65 97.94 97.49 95.63 89.87 70.97 91.76

2M (VP-GMHMM2) 98.65 98.12 97.78 95.97 90.81 73.31 92.44

Table 1. Average recognition accuracy on four types of noise in set A of the Aurora 2 database with one Gaussian mixture (1M)

and two Gaussian mixtures (2M) in each state.
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Fig. 2. Estimated mean (upper panel) and variance scaling
(lower panel) polynomials of the energy component from the
first state of digit “oh” for the four types of background noise.

VP-GMHMM2 yields better performance than VP-GMHMM1,
especially in the low SNR conditions.

5. SUMMARY AND CONCLUSIONS

In this paper, variance variation with respect to an continu-
ous environment-dependent variable is investigated in a VP-
GMHMM framework. The variation is described by a scaling
polynomial applied to the variances in the original acoustic
models. The maximum likelihood estimation of the scaling
polynomial is given under an SNR quantization approxima-
tion scheme. By considering both mean and variance vari-

ations, VP-GMHMM yields significant improvements in the
experiments performed in the Aurora 2 database.

6. REFERENCES

[1] Y. Gong, “Speech recognition in noisy environments: a
survey,” Speech Communication, vol. 16, pp. 261–291,
1995.

[2] M. Gales and S. Young, “Robust continuous speech
recognition using parallel model combination,” IEEE
Trans. on Speech and Audio Processing, vol. 4, no. 5, pp.
352–359, 1996.

[3] X. Cui and Y. Gong, “Variable parameter Gaussian mix-
ture hidden Markov modeling for speech recognition,”
Proc. of IEEE Int. Conf. on Acoustics, Speech and Sig-
nal Processing, vol. 1, pp. 12–15, 2003.

[4] M. Gales, D. Pye, and P.C. Woodland, “Variance com-
pensation within the MLLR framework for robust speech
recognition and speaker adaptation,” Proc. of Int Conf.
on Spoken Language Processing, 1996.

[5] L. Deng, J. Droppo, and A. Acero, “Dynamic compen-
sation of hmm variances using the feature enhancement
uncertainty computed from a parametric model of speech
distorti,” IEEE Trans. on Speech and Audio Processing,
vol. 13, no. 3, pp. 412–421, 2005.

[6] A. Dempster, N. Laird, and D. Rubin, “Maximum likeli-
hood from incomplete data via the EM algorithm,” Jour-
nal of the Royal Statistical Society, vol. 39, no. 1, pp.
1–38, 1977.

[7] R. Martin, “An efficient algorithm to estimate instanta-
nous SNR of speech signals,” Proc. of European Conf. on
Speech Communication and Technology, pp. 1093–1096,
1993.

I  1120


