
A DECODER FOR LVCSR BASED ON FIXED-POINT ARITHMETIC

Enrico Bocchieri and Doug Blewett

AT&T Labs-Research,
Florham Park, NJ 07932, USA

ABSTRACT
The increasing computational power of embedded CPU’s mo-
tivates the fixed-point implementation of highly accurate large-
vocabulary continuous-speech (LVCSR) algorithms, to achieve
the same performance on the device as on the server. We
report on methods for the fixed-point implementation of the
frame-synchronous beam-search Viterbi decoder, N-grams lan-
guage models, and HMM likelihood computation. This fixed-
point recognizer is as accurate as our best floating-point rec-
ognizer in several LVCSR experiments on the DARPA Switch-
board task and on an AT&T proprietary task, with different
types of acoustic front-ends and HMM’s. We also present ex-
periments on the DARPA Resource Management task using
the StrongARM-1100 206 MHz CPU, where the fixed-point
implementation enables real-time performance: the floating-
point recognizer, with floating-point software emulation, is 50
times slower for the same accuracy.

1. INTRODUCTION

Large-vocabulary continuous-speech recognition (LVCSR)
may find wide use in consumer, military and industrial appli-
cations using embedded platforms, such as PDA’s, telephone
handsets, network appliances, and wearable computers. For
example, a potential application is in Short Message Services
that has an expected global volume in excess of 1,000 billion
messages in 2005. LVCSR on embedded platforms presents
a unique set of challenges [1, 2]. In particular, to lower hard-
ware cost and power consumption, for longer battery life and
miniaturization, the CPU’s do not have floating-point arith-
metic units. However their computational power is constantly
increasing. This motivates the study of the fixed-point im-
plementation (for operation on the device) of high-accuracy
LVCSR algorithms that are traditionally implemented on the
floating-point server.

Relevant studies are [3, 4], concerning HMM parameter
tying, [5, 6, 7] for the state-likelihood computation in fixed-
point. Other issues such as recognition of large lists, front-end
implementation, memory reduction, rapid porting are treated
in [8, 9, 10, 11, 12, 13]. Previous works on fixed-point decod-
ing concern either small-vocabulary continuous-speech tasks
or large-vocabulary tasks with deterministic grammars. In-
stead, we focus on LVCSR tasks based on word N-gram lan-

guage models. Sections 2 and 3 review the decoding prob-
lem and the fixed-point arithmetic. In Section 4 we propose
a systematic approach to the fixed-point representation of the
parameters of the recognizer components, including frame-
synchronous Viterbi beam-search, with stochastic and deter-
ministic language models, and HMM state and state-duration
likelihood computations. The fixed-point recognizer is as ac-
curate as the floating-point recognizer in LVCSR experiments
(Section 5) on the Darpa Switchboard task and on fluently
spoken telephone speech from an AT&T customer care appli-
cation. The design is quite general, with the same fixed-point
parametrization used for different acoustic front-end features,
feature transformations, and HMM’s (ML and MMI trained).
The test data contains up to fifty words per sentence, and even
for these long utterances, the accumulation of log-likelihoods
scores during fixed-point decoding is not problematic. Our
target is 32-bit integer CPU’s (e.g. StrongARM), but the ap-
proach may be suitable for 16-bit CPU’s with 32-bit accu-
mulators as well. We also report on real-time recognition of
the DARPA Resource Management task performed on a 206
MHz StrongARM CPU.

2. LVCSR MAP DECODER

Given the observation sequence O=(o 1, ...o T), the maxi-
mum a-posteriori decoded word sequence Ω=(ω1, ...ωM) is
chosen to maximize p(Ω|O) p(Ω). After well known steps:

Ω̂ = arg max
Ω

F(Ω) , with decoding function F :

F = ln(L) + α ln(A) + β ln(D) , (1)

L : likelihood of language model,

A : likelihood of the HMM states (acoustic model),

D : likelihood of the HMM state durations,

α, β : state and state-duration model multipliers.

2.1. Language Model And C ◦ L ◦ G Transducer

We encode the language model probabilities by the arc costs
of a C ◦ L ◦ G transducer [14] that represents the language
model, either a word N-gram or a deterministic grammar, the
lexicon, with pronunciation probabilities, and the phonetic
context dependencies. For generality, by ln(L) we denote

I ­ 11131­4244­0469­X/06/$20.00 ©2006 IEEE ICASSP 2006

the negative total cost of the transducer path, induced by Ω:

ln(L) = −
∑

arc ∈ path(Ω)

costarc (2)

2.2. HMM State Likelihoods

The generic HMM state s is a weighted mixture of Ns Gaus-
sians with diagonal covariances (σ denotes the vector of stdv’s):

P (o |s) =
Ns∑
i=1

ws,i N (o ; µs,i, σ s,i) ≈

max
i=1,Ns

ws,i N (o ; µs,i, σ s,i)

Given the sequence S=(s1, .., sT) of states aligned to O, the
total state likelihood contribution to (1) is α ln(A):

T∑
t=1

α

2
max

i=1,Nst

⎛
⎝2cst,i +

d∑
j=1

((
o j

t − µj
st,i

)
σ j

st,i

−1
)2

⎞
⎠ (3)

d : feature vector dimension
o j

t , µj
s,i, σ j

s,i : jth component of o t, µs,i, σ s,i

cs,i : ln(ws,i) −
∑d

j=1 ln(σ j
s,i

√
2π)

2.3. State Duration Model

We denote with p(δ|ψ) the probabilities of the duration of
δ-frames for state ψ. They are estimated (assuming state in-
dependence) as gamma p.d.f’s, and stored in look-up tables.
Given the states Ψ=(ψ1, ...ψΘ), with durations ∆=(δ1, ..δΘ),
the contribution of the duration model to (1), is:

β ln(D) = β ln(P (∆|Ψ)) =
Θ∑

θ=1

β ln(p(δθ|ψθ)) (4)

3. FIXED-POINT ARITHMETIC

In fixed-point, a decimal number x is stored in a computer
word as an integer, where the px least-significant bits contain
the fractional part of x, and the most-significant bits the in-
teger part. This representation is said to have Q−px format.
In general, the choice of px is a trade-off between truncation
errors and overflow problems. Fixed-point arithmetic is based
on integer operations. In z = x±y, the relation px = py = pz

applies. The product z = x × y is in format Q−(px + py).
Arithmetic shifts may be used to change the Q fixed-point
format , to reduce truncation errors and to avoid overflow.

3.1. Fixed-Point And Linear Quantization

The function nearest integer(2p x) gives the Q−p fixed-
point format of decimal x. Suppose that we want to quantize
the range of decimal values [a, b] , using m bits, e.g. to the
range of integers [−2m−1, 2m−1) . We follow the procedure:

m : bits for the d quantizers of means µj
s,i , j = 1, d.

v : bits for the d quantizers of σ j
s,i

−1
, j = 1, d.

e : fixed-point Q−e format for

– normalized error: (o j
t − µj

st,i
) σ j

st,i

−1

and Q−2e format for:
– HMM state log-likelihoods,
– Acoustic duration model log-likelihoods,
– C ◦ L ◦ G fsm costs,
– Cumulative log-probabilities during decoding,

and related parameters, such as beam threshold

Table 1. Fixed-point parameters m, v and e.

i. Optional. Demean decimal values, by subtracting a+b
2 :

[a, b] ⇒ [−a + b

2
,

a + b

2
]

ii. Find the largest integer p, such that

−2m−1 ≤ 2p x < 2m−1 , x ∈ [a, b]

iii. Quantize x ∈ [a, b] by y = nearest integer(2p x).

Step iii yields a fixed-point format of x with scale-invariant
average truncation error, because of the choice of p in ii.

4. FIXED-POINT IMPLEMENTATION OF
DECODING FUNCTION

Our fixed-point design of (1) is parametrized by e, m, and v,
as summarized in Table 1. Intuitively, a crucial role in the
state likelihoods (3) is played by the Mahalanobis distance,

d∑
j=1

((
o j

t − µj
st,i

)
σ j

st,i

−1
)2

(5)

and, its fixed-point format is specified as Q−2e. Since (3) ac-
cumulates (5) into the state log-likelihoods, we represent all
the decoder log-likelihoods in Q−2e format. Therefore, the
HMM log-terms 2cs,i in (3), are also Q−2e, and, the product
by α

2 maintains the Q−2e format through an appropriate arith-
metic shift. Similarly, the duration log-probabilities of (4) are
Q−2e fixed-point, and when multiplying by β, the Q−2e for-
mat is maintained by arithmetic shift.

Also, the costarc of (2) are Q−2e. Note that, in the fixed-
point composition C ◦L◦G, a simple integer addition imple-
ments the ⊗ operator in the tropical semiring, under the con-
dition that the costs of the C, L and G are all Q−2e. There-
fore the delayed composition feature [14] is implemented as
in the floating-point decoder. This feature minimizes run-time
memory and is usefull in applications such as [8].

Different approaches are suitable for the implementation
of (5) in Q−2e fixed-point. We square and accumulate terms:(

o j
t − µj

st,i

)
σ j

st,i

−1
, in Q−e format (6)

I ­ 1114

sum = 0 , j = 1
while(j ≤ d) {

tmp = (o j
t − µj

st,i
) σ j

st,i

−1
// Q−(pj + rj)

tmp = tmp >> shiftj // change to Q−e

sum = sum + tmp ∗ tmp //sum is Q−2e
j = j + 1

}

Table 2. Pseudo-code for fixed-point implementation of (5)

that are computed using suitable integer representations of
the HMM parameters. To account for the different dynamic
ranges of the Gaussian mean components, we build a quan-
tizer for every jth (j = 1, d) component, as in i, ii and iii of
Section 3.1, for the decimal range:

[
min

Gaussian i , state s
µj

s,i , max
Gaussian i , state s

µj
s,i

]

Parameter m specifies the number of bits of the quantizers.
We denote by Q−pj the fixed-point format of µj

s,i, induced
by the jth quantizer that also defines the fixed-point format of
o j

t , in (6). Similarly, we build another set of d quantizers, one

for every σ j
s,i

−1
(the jth inverse stdv component) using steps

ii and iii of Section 3.1. Parameter v specifies the number
of bits, output range [0, 2v), of these quantizers. We denote

by Q−rj the fixed-point format of σ j
s,i

−1
, induced by its

quantizer. The fixed-point format of the integer product (6)
is therefore Q−(pj + rj) that we change to Q−e with a right
arithmetic shift of shiftj = (pj + rj − e) bits, as shown in
Table 2 (negative shiftj implies a left shift). In practice, we
can choose e, m and v, so that shiftj ≥ 0, j = 1, d. It
might also be worthwhile for higher computational speed, to
implement (5) through multiply-add operations.

5. EXPERIMENTS

Central in our design is the fixed-point representation of (6),
whose statistics are largely independent of the ASR task: after
HMM maximum likelihood estimation (6) are Gaussians with
zero mean and unit variance. Our hypothesys is that the de-
coder fixed-point parametrization does not need task-specific
calibrations which we verify in recognition tests on:

SWBD: Darpa Switchboard task, tested on the 2003 real-
time test set (recognition from first-pass only),

CCAPP: fluent telephone speech from a customer-care
application, with word tri-gram language model (per-
plexity of 60), vocabulary of 7,000 words, and up to 50
words/sentence,

RM: Darpa Naval Resource Management, with word-pair
grammar, speaker-independent task,

with feature types:

MFCC: mel-frequency cepstrum coefficients,

ASR Word Accuracy (%)
System Floating Fixed

SWBD MFCC-HDA MMI 59.2 59.1
SWBD MFCC-HDA ML 56.7 56.5
SWBD PLP-HDA ML 55.7 55.6

CCAPP MFCC-HDA-VTLN MMI 80.5 80.6
CCAPP MFCC-HDA MMI 78.4 78.4

RM MFCC-HDA ML 96.4 96.4
RM MFCC-DD ML 95.7 95.6
RM PLP-DD ML 95.6 95.5

Table 3. Floating and fixed-point decoder accuracy.Fixed-
point parameters: e = 5, m = v = 8

PLP: perceptual linear prediction cepstra,

and with feature transformations:
DD: cepstra with 1st and 2nd differentials, 39 components,
HDA: discriminative linear transformation, 60 components,
VTLN: vocal tract length normalization.

The HMM’s are context-dependent triphonic models, esti-
mated either by maximum likelihood (ML) or maximum mu-
tual information (MMI). Training of the CCAPP and SWBD
HMM’s use 170 and 300 hours of audio, respectively. For ex-
ample, the 1st pass of the AT&T RT-03 Switchboard system,
with MFCC features and discriminative transformation, and
MMI-trained HMM, is denoted by SWBD MFCC-HDA MMI.

We want to compare the LVCSR accuracies of the fixed-
point and of the floating-point recognizers, and we use a
Pentium R© 4 PC for this purpose. On the Pentium, fixed-
point implementations may be faster than floating-point, as
shown in [6] for the state likelihoods. Our target is the Stron-
gARM CPU, and we have not optimized the fixed-point soft-
ware for speed on the Pentium. However, the Pentium is con-
venient for measuring accuracies, because software running
on the Pentium gives the same results as on the StrongARM.
Table 3 shows that the accuracies of the fixed-point and the
floating-point recognizers (equal beamwidth), are the same,
within 0.1%, for all tasks. Means and variances can be lin-
early quantized to 5 bits, without significant loss of accuracy
(Table 4). Additional compression may be obtained by non-
linear quantization [7], at the cost of additional indirections
in the computation. We wanted to quantize HMM means and
variances to no more than 8 bits, to reduce the HMM memory
storage to a relatively small fraction of total run-time memory
use. The accuracy is unchanged (within 0.1%) for 1 < e < 7
(Table 4). Accuracy suffers from truncation errors for e ≤ 1
, and from overflow problems for e ≥ 7. Larger e’s, would
require normalization of the cumulative log-likelihoods in the
Viterbi search. In any case the decoder operates correctly over
a wide range of e , on the various tasks. We use 32-bit fixed
point arithmetic, but the good performance for e as small as 2,
suggests that the implementation is suitable for 16-bit CPU’s
with 32-bit accumulators.

I ­ 1115

v= 8 v= 7 v= 6 v= 5 v= 4 v= 3
m= 8 80.6 80.5 80.5 80.2 76.6 45.6
m= 7 80.5 80.6 80.4 80.2 76.5 45.7
m= 6 80.4 80.5 80.2 80.1 76.4 45.3
m= 5 80.3 80.2 80.1 80.0 76.3 45.0
m= 4 77.8 78.0 77.6 77.8 74.4 44.1
m= 3 56.4 56.6 57.0 59.9 53.3 43.5

Table 4. Word accuracy (%) as function of m and v (e= 5)
of fixed-point system CCAPP MFCC-HDA-VTLN MMI.

e=8 e=7 e=6 e=5 e=4 e=3 e=2 e=1 e=0
69.2 79.9 80.5 80.6 80.5 80.5 80.5 80.2 75.6

Table 5. Word accuracy (%) as function of e (m = v = 8)
of fixed-point system CCAPP MFCC-HDA-VTLN MMI.

We benchmarked the RM task on a StrongARM-1100,
running at 206 MHz, embedded in a desk-top telephone set
prototype, with 30 Mbytes of RAM, and Linux 2.6.6.

ethernet

serial comm.
StrongARM,

Linux OS.

Pentium
PC,

Linux OS.

Desk−top phone,

StrongARM executables are cross-compiled on the PC, with
the GNU-toolchain and gcc-3.4.2. For testing ASR on the de-
vice, access to executables and to fixed-point speech feature
files is through ethernet-NFS. Real-time recognition of the
RM MFCC-DD ML fixed-point system on the StrongARM-
1100 is shown in Figure 1 that plots the accuracy as a function
of time (normalized by duration of input speech), for differ-
ent beamwidhts (run-time memory use of 7.5 MBytes). Cur-
rent generation embedded CPU’s (e.g. 624 MHz XScale R©)
with 128 MBytes of RAM, could run in real-time more com-
plex tasks, such as CCAPP. The fixed-point implementation
is necessary for embedded ASR: we tested the floating-point
decoder, cross-compiled with floating-point software emula-
tion, and it was ≈ 50 times slower.

6. CONCLUSION
The presented fixed-point implementation of the LVCSR al-
gorithms is as accurate as our best floating-point recognizer,
in medium and large vocabulary continuous speech recogni-
tion tasks, as tested on the Pentium R© 4 and StrongARM-1100
CPU’s.

In addition to the more important motivation discussed in
the Introduction, the algorithms are useful to prototype ASR
applications in embedded systems. In fact, the decoder fixed-
point parameters do not need critical task-dependent calibra-
tions, and the LVCSR language and acoustic models, trained
with the standard floating-point algorithms, can be automati-
cally ported to the required fixed-point representation.

7. REFERENCES

[1] M.Novak, “Towards large vocabulary asr on embedded
platforms,” in Proc. ICSLP’04.

 75

 80

 85

 90

 95

 100

 0 0.5 1 1.5 2 2.5

W
or

d
A

cc
ur

ac
y

(%
)

real-time factor

RM task: 1000 words vocabulary, 1200 test sentences

StrongARM-1100 at 206 MHz

Fig. 1. Accuracy versus recognition time on the StrongARM.

[2] O.Viikki, “Asr in portable wireless devices,” in Proc.
ASRU’01, pp. 96–99.

[3] S. Sagayama and S. Takahashi, “On the use of scalar
quantization for fast hmm computation,” in Proc.
ICASSP’95, pp. 213–216.

[4] E. Bocchieri and B. Mak, “Subspace distribution clus-
tering hidden markov model,” IEEE Trans. on ASSP,
vol. 9, pp. 264–275, March 2001.

[5] M.Vasilache, “Speech recognition using hmm’s with
quantized paramaters,” in Proc. ICSLP 2000, vol. 1, pp.
441–444.

[6] S. Kanthak, K.Schutz, and H.Ney, “Using simd instruc-
tions for fast likelihood calculation in lvcsr,” in Proc.
ICASSP 2000, pp. 1531–1534.

[7] J. Leppanen and I. Kiss, “Comparison of low footprint
acoustic modeling techniques for embedded asr stud-
ies,” in Proc. INTERSPEECH ’05, pp. 2965–2968.

[8] M.Novak, R.Hampl, P.Krbec, and J.Sedivy, “Two-pass
search startegy for large list recognition on embedded
speech recognition platforms,” in Proc. ICASSP’03.

[9] T.Kohler, C.Fugen, S.Stuker, and A.Waibel, “Rapid
porting of asr systems to mobile devices,” in Proc. IN-
TERSPEECH’05, pp. 233–236.

[10] Y.Gong and Y. Kao, “Implementing a high accuracy
speaker-independent continuous speech recognizer on a
fixed-point dsp,” in Proc. ICASSP 2000, pp. 3686–3689.

[11] Y.H. Kao and P.K. Rajasekaran, “A low cost dynamic
vocabulary speech recognizer on a gpp-dsp system,” in
Proc. ICASSP 2000, pp. 3215–3218.

[12] J.Jeong, I.Han, E.Jon, and J.Kim, “Memory and com-
putation reduction for embedded asr systems,” in Proc.
ICSLP’04.

[13] R.Rose, S.Parthasarathy, B.Gajic, A.Rosenberg, and
S.Narayanan, “On the implementation of asr algo-
rithms for hand-held wireless mobile devises,” in Proc.
ICASSP’01, 2001.

[14] M. Mohri, F. Pereira, and M. Riley, “Weighted finite-
state transducers in speech recognition,” Computer,
Speech and Language, pp. 16(1):69–88, 2002.

8. ACKNOWLEDGEMENT
We thank C.Allauzen for the compilation of the FSM library
with integer costs, and S.Shivappa for HMM training on PLP
features.

I ­ 1116

