
MULTI-LINGUAL SPEAKER-INDEPENDENT VOICE USER INTERFACE FOR

MOBILE DEVICES

Juha Iso-Sipilä, Marko Moberg, Olli Viikki

Nokia Technology Platforms, Tampere, Finland

Email: {juha.iso-sipila, marko.moberg, olli.viikki}@nokia.com

ABSTRACT

This paper presents a multi-lingual speaker-independent voice

User Interface (UI) that has been implemented for Nokia S60

mobile phones. The paper concentrates on discussing the specific

approach used for achieving a multi-lingual and configurable

speech recognition and speech synthesis system. The main

applications are speaker-independent name dialing and voice

commands. The novelty of the applications is that the user does not

need to train the voice dialing system but the application reads the

user’s phonebook and generates the required voice tags

automatically. The speaker-independent voice dialing has already

been introduced in regions where the language diversity is not so

great. The system presented in this paper is the first of its kind to

support both speech recognition and speech synthesis in more than

40 languages in embedded devices with strict memory and

performance requirements.

1. INTRODUCTION

Speaker-dependent voice dialing, including name dialing and voice

commands, has been the de-facto feature in mobile devices today.

The argument is based on the fact that almost all major mobile

phone manufacturers have speaker-dependent voice dialing in their

handsets. The benefits of such systems are multiple, ranging from

language-independency and low complexity to high recognition

accuracy and readily available voice feedback. These benefits do

not, however, diminish the fact that the user needs to train each

voice tag separately. This limits the number of voice tags to only a

few and user has hard time to remember the exact utterance that

was spoken during training procedure.

Speaker-independent speech recognition is very intriguing for

dialing the contacts in the mobile device. The user does not need to

train the voice tags, but the system does this for the user

transparently, automatically and without any interaction with the

user. The obvious challenges due to speaker-independent speech

recognition are language-dependency and increased complexity.

The language of the utterance should be known and only then,

language-specific methods can be used to find out the

pronunciation of the word. Also, pronunciation modeling for every

supported language requires a significant amount of development

work. Furthermore, the system should be capable of detecting and

processing multiple languages at once, which creates several new

requirements for the system. These requirements include automatic

language identification, non-native word pronunciation modeling,

multiple pronunciation support, and multi-lingual acoustic models,

etc.

The paper has been constructed as follows: Chapter 2

introduces the multi-lingual framework that has been developed in

order to cope with the problems described in the previous

paragraph. Chapters 3, 4 and 5 continue on the separate sub topics

of multi-lingual text-processing, speech recognition and speech

synthesis, respectively. Chapters 6 and 7 discuss the specific user

interface and usability related issues found during the development

and first deployments. The paper is finished with conclusions,

acknowledgements and references to previous work.

2. MULTI-LINGUAL FRAMEWORK

The multilingual speaker-independent speech recognition

framework has been introduced in [1]. The basic principles are

illustrated in Fig. 1. Multilinguality, i.e. the capability of being

able to support a multiple set of languages at the same time, has

been the starting point of the whole system design.

Language ID

English

Finnish

German

Dutch

Spanish...

Language

Identification

Module

Name in

written format

John Smith

Language of

the name is

English
Pronunciation

Modeling

Module

Pronunciation

English

Finnish

German

Dutch

Spanish...

Acoustic

Modeling

Module

Phoneme string of

the name

/dZ/ /Q/ /n/

/S/ /m/ /I/ /t/

Multi-

Lingual ASR

Engine

Acoustic

model for

John Smith

Language

Morphing

Prosody

Generation

Rule

processing

Klatt88

Morphing

Table

English

Finnish...

CARTs

English

Finnish...

Rules

English

Finnish...

HMMs

English

Finnish

German

Dutch

Spanish...

Figure 1. Block diagram of a multi-lingual voice UI system.

In voice dialing, no assumptions can be made on the language

identity of the vocabulary items, but the phonebook can include

names from multiple different languages. For this purpose, the

voice UI system includes an automatic language identification

module. Once the language is known (guessed) a language specific

pronunciation modeling method is applied to get the pronunciation

of the word. Multiple pronunciation variants are typically created

in order to cope with the uncertainty related to language

identification. Once the phonetic sequence is known, the word can

be added to the active vocabulary of the multi-lingual speech

recognizer. Similarly, when the speech synthesizer is used, the

pronunciation module finds the pronunciation for the word and

I ­ 10811­4244­0469­X/06/$20.00 ©2006 IEEE ICASSP 2006

then the speech synthesizer uses the phonetic sequence to generate

the proper speech output.

It should be noted that the pronunciation module is shared by

the speech recognizer and the speech synthesizer. This enables

lower memory requirement for the Text-to-Phoneme (TTP)

module and also makes sure that the speech recognition and speech

synthesis phonetics have been developed in co-operation for each

language. The TTP module generates additional information, such

as tone and stress, for the speech synthesizer.

The Speech Recognition (ASR) framework uses mono-phone

HMMs with beam-search. A multi-state multi-mixture background

model is used for noise modeling.

The Text-to-Speech (TTS) engine is based on the Klatt’s

formant synthesizer and is controlled by a dedicated multi-lingual

control language that enables processing of the phoneme sequence

for each supported language, including tone control for tonal

languages.

3. MULTI-LINGUAL PHONETICS, TEXT-PROCESSING

AND PRONUNCIATION MODELING

In order to build a truly multi-lingual system, it is desired that

several phonemes are shared between languages to minimize the

memory use. The multi-lingual phonetic alphabet, called Nokia

IPA (NIPA), has been developed to support all voice dialing

languages for both speech recognition and speech synthesis. Since

ASR and TTS share the same pronunciation model, special

attention has been put to the accuracy of the language-specific

phonetics to maintain the high phonetic accuracy of synthesized

speech.

The text processing steps before speech recognition or speech

synthesis can be divided into the following steps that are presented

in the following sub-sections:

Text pre-processing, character conversions, acronym detection

Language identification from text

Pronunciation modeling

3.1. Text pre-processing

The task of text processing is to prepare the input text string to be

suitable for language identification and pronunciation modeling.

The steps taken in this part consist of acronym detection, marking

of digits, deletion of non-pronounceable characters (such as !, ¤, /),

Romanization (e.g. transliteration of Greek to get English

pronunciation) and language specific character conversions.

The acronym detector processes the text in such a way that

words that are written in capital letters can be considered to be

acronyms if they fulfill some other requirements. The detection

itself is quite complex procedure and the detailed overview is left

out of this presentation.

From the end-user point of view, it is vital that the system can

cope with various character sets and languages. Consider Swedish

name ‘Håkan’ that is found in a device having English UI. The

system should be able to cope with this the best possible way. Text

pre-processing for English notices that there is an unknown letter

‘å’. Luckily, the letter is known by the overall system and is

translated to letter ‘o’, which is the closest estimate. Similarly,

other script mismatches are handled by way of letter

transformations or Romanization.

3.2. Language identification from text

The task of language identification from text is considered really

difficult in case of short sentences and words. For proper names,

such as given and family names, this is especially difficult. It is

characteristics to language identification that there are cases for

which there are simply no correct answers, e.g. language identity

for a name “Peter”. Furthermore, the users of mobile phones can

have a wide variety of nationalities in their contact data, which

leads to enormous problems in detecting the language of the

contact name. Due to these problems, language identity can be

considered one of the worst performing parts of the overall system

and all available language information, e.g. UI language, should be

utilized if just possible. N-Grams, neural networks and decision

trees have been proposed for language identification [2].

3.3. Pronunciation modeling

This part of the text processing is responsible of finding a

pronunciation to the given text string. The language of the text

string should be known at this point. In general, the pronunciation

can be found by applying several types of methods such as rules,

dictionaries, look-up tables, neural networks or decision trees. The

mobile platform has limitations on the amount of memory that can

be used to store the pronunciation methods and hence a general

dictionary is out of question for every language. The output of the

pronunciation model is a sequence of phonemes describing the

pronunciation of the word(s).

The Nokia voice UI utilizes three types of pronunciation

modeling methods, namely lookup-tables, rules and decision trees

(DT) [3]. The lookup tables are used for known voice commands

and some special cases that cannot be easily handled with rules.

The rules are used for majority of languages while decision trees

are only used for some irregular languages, such as English and

Thai. The Table 1 shows the pronunciation model types and their

sizes for a few languages.

English Finnish Thai Mandarin French

Type DT Rule DT Rule Rule

Memory 43 kB 4 kB 85 kB 76 kB 15 kB

Table 1. Pronunciation methods and sizes for some languages

4. MULTI-LINGUAL ASR FOR VOICE DIALING

Once the phonetics for multi-lingual speech recognition and

synthesis have been specified, the development of the multi-

lingual speech recognizer can be started. The most important pre-

condition in the development is sufficient amount of training data

to cover the phonemes of the multi-lingual phonetic definition.

Second most important requirement is that there is enough testing

material to verify the performance of the system in all the desired

languages.

4.1. Acoustic model training

The basis for multi-lingual HMM estimation is the phoneme

inventory designed for multiple languages. The training data

annotation is constructed accordingly. The main input to the

training process is the set of languages that should be included in

the resulting HMM. According to the set of languages, a proper set

I ­ 1082

of training data is chosen for the training process. The important

part here is that the languages used for the actual training can be

different from the target languages. To have a proficient phonetic

coverage for certain phonemes it is necessary to take some extra

data from other languages. Also, some of the target languages may

not have any training data and this must be compensated by adding

some more languages from the training databases. The training

procedure itself is Maximum Likelihood estimation using Baum-

Welch algorithm.

4.2. Multi-lingual speech recognition engine

The speech recognition engine can be divided into two parts:

feature extraction (front-end) and Viterbi decoder (back-end).

4.2.1. Front-end

The front-end is a standard MFCC (12 static coefficients, C0 and

their 1st and 2nd order derivatives) front-end with some

refinements. The basic difference to the normal MFCC front-end is

the mean and variance normalization that is applied to the feature

vector components [4].

The normalization has two major effects to each FV

component stream:

The statistics of the signal is limited to the boundaries given

by the statistics estimation buffer.

The normalization enables easier combination of speech

databases from various sources and languages.

4.2.2. Back-end

The speech recognition engine has been tailored for the isolated

word recognition task and uses a trained background model. The

four main features of the back-end are given next:

Optimized tree-based grammar for the isolated word

recognizer

Beam search with path pruning

Scalar quantization of FV and model parameters to speed-up

computation and reduce memory consumption

Speaker-adaptation to improve recognition accuracy over

time

All the features given above are described more thoroughly in

Vasilache et al [5].

5. MULTI-LINGUAL SPEECH SYNTHESIS

Speech synthesis is required to confirm the recognition result to

the user. Development of speech synthesis is significantly more

time consuming than development of speech recognition due to

much more strict requirements for the correctness of phonetics and

pronunciation modeling. Furthermore, more language knowledge

is needed to be able to objectively measure the goodness of the

speech synthesizer for a given language.

The speech synthesizer used in Nokia voice UI is a formant

synthesizer based on the work done by Klatt [6][7]. The strict

limitation on memory and complexity does not allow use of more

sophisticated TTS techniques, such as concatenative waveform

synthesizers. A block diagram of the synthesis module was already

presented as part of Figure 1.

However, some shortcuts have been taken to have full

language support for over 40 languages. For certain languages, so

called language morphing is utilized [8]. The morphing is such that

for an unsupported language A, native TTS engine of language B is

used. The basic requirement is that the languages should be

phonetically and prosodically close enough to be able to generate

adequate quality speech for language A. Table 2 below lists some

language morphing that takes place in the TTS system. The source

language does not have native TTS support. The target language

has native TTS support and is used to generate the speech for the

source language.

Source

language

Norwegian Estonian Bahasa

Malaysian

Ukrainian

Target

language

Swedish Finnish Bahasa

Indonesian

Russian

Table 2. List of some language mappings in the TTS system.

The language information and the phoneme string, either

unmodified or modified by morphing, are passed to the prosody

generation (See Fig. 1). The language specific CARTs

(Classification and Regression Trees) trained with annotated

utterances predict syllable boundaries, syllable stress, segment

durations and intonation [9].

A set of language specific rules is applied to provide correct

Klatt-parameters to the synthesizer. The co-articulation effects are

taken into account by rules, which define the parameter transitions.

The rules are based on context information, phoneme labels and

other linguistic features such as manner and place of articulation.

All the language specific information is stored as data to make the

language development easier and to separate it from the engine

software development. The overall size of a typical language

specific data is 15kB.

Parameter frames are then constructed and fed into the

Klatt88 synthesizer to create the speech waveform. The frame

contents are updated every 5 ms.

6. VOICE USER INTERFACE

For the end-user, there is no automatic built-in value in a voice

controlled UI. A perfectly working speech recognizer and text-to-

speech systems can be spoilt if the end-user interface is badly

designed. The main design objective must be that the user can

complete the task in voice UI, i.e. voice dialing or voice command,

more efficiently than using conventional input/output modalities.

Ease-of-use and the speed of interaction are the two most

important requirements for the voice user interface. From these

core requirements, the main characteristics of the voice UI were

specified as follows:

1. Tight integration between voice and visual UI – voice UI may

not be a standalone application.

2. Voice interaction should not be overused in input and output

3. Easy cancellation in case of recognition errors

4. User customization

Voice input/output must be an integral part of the whole UI of

the device. If the user needs to start the voice UI functionality by

first searching for a dedicated speech application, it is obvious that

the speed objectives set for the interaction are very difficult to

meet. A dedicated “voice key” is a very desired so that can be used

to start voice interaction from any state of the UI by a simple

button press.

It is also important not to overuse speech in UI. In many

situations, e.g. when scrolling up/down a list view, it is much

I ­ 1083

faster to use keypad than a voice command. It should also be

remembered that every time when the recognizer is started, there is

a possibility for a recognition error. In speech output, one also

needs to be careful not to use too much spoken prompts. While the

first-time user may appreciate lengthy instructions spoken by the

machine, e.g. “Please say the name or command”, these prompts

will become very irritating if the user is continuously using the

system.

The fact that speech recognizers make mistakes must also be

considered in UI design. There must always be an easy way to

cancel the UI action in case a recognition error has occurred. One

should also avoid too complicated error correction schemes, e.g.

confirmation queries, as those make the dialogues longer and

reduce the task completion speed. In many cases, a much faster

response is achieved by asking the user to repeat the command

rather than starting a long error correction dialogue.

UI personalization is an important element in mobile devices.

End-users have almost endless possibilities to update the UI of

their phones. It is therefore essential that this is also feasible for

voice UI. In Nokia voice UI, rather than having a fixed list of pre-

defined voice commands, the users are able to manage their voice

command set through the voice commands application. They can

create new voice shortcuts and modify the existing commands.

6.1. User Guidance

For consumers, voice control is a very novel concept. There are no

well established usage paradigms in voice UI as in more mature

input/output modalities. It is very important to guide the users so

that they are always confident in What, When and How to

command the device. The first use impression is crucial when the

users are judging the usefulness of new technology, and therefore,

it is necessary that the users understand the limitations of the

technology. When the users reported low performance in early

trials, the following user-related problems were often the reasons

behind the low performance:

The user used commands and names that were not included in

the vocabulary

The user had “unspeakable” entries (strange acronyms,

characters) in their phonebook.

The users spoke “too early” and the recognizer was not

listening the input

The user spoke in a sloppy manner.

The users spoke the first and last name in a different order

than they had written in the phonebook.

Many of the above reasons are very characteristics to speech

recognition and they can be avoided if the users are aware of the

limitations. When introducing the new technology, it is thus vital

to guide the users to use the technology in the appropriate way.

7. FIRST END-USER LEARNINGS AND CONCLUSIONS

When writing this paper, the first two Nokia products, Nokia N70

and N90 devices, have been in sales for a couple of months and

only a little end-user feedback is available. There are, however,

some conclusions that can be drawn from the feedback received up

to now.

In general, the users have been impressed with the capabilities

of the state-of-the-art voice recognition technology. The fact that

the system works without any training in all languages is seen as a

major improvement over the speaker-trained recognizers that have

been integrated in mobile devices already for years. However, at

the same time, it has been observed that voice UI is still a

technology-driven feature – the use of the technology is not always

obvious for the end-users and many technical shortcomings reduce

the user experience. The performance variation across the speakers

and languages is something that should be improved.

Regarding text-to-speech, the feedback has been positive even

though the formant synthesis technology dates back from the

“Stone Age”. Obviously, when listening to short phrases/names,

the main requirement is that the speech output is intelligible and

naturalness has only a secondary priority.

The customization aspects of voice UI have received positive

comments and the users have already learned that they can

customize commands according to their own taste. Several

comments requesting more voice command functionality have

been received. This is obviously a very positive feedback

indicating that the users find the voice UI useful and would like to

have even more voice features in the future versions.

8. ACKNOWLEDGEMENTS

The effort to put together the Nokia voice UI system was started

sometime at the end of the previous millennium. Since then,

several people have contributed the development work. The

authors would like to give their sincere thanks to all those people

at Nokia Technology Platforms and Research Center who have

over the years been involved in the development of the system

described in this paper.

9. REFERENCES

[1] O. Viikki, “ASR in Portable Wireless Devices”, Proc. Of IEEE

Workshop on Automatic Speech Recognition and Understanding,

Madonna di Campligione, Italy, 2001.

[2] J. Tian, and J. Suontausta, “Scalable Neural Network Based

Language Identification from Written Text”, ICASSP 2003, IEEE,

Hong Kong, pp. 48-51, 6-10 April 2003.

[3] J. Suontausta, and J. Tian, “Low memory decision tree method

for text-to-phoneme mapping”, Proc. of IEEE Workshop on

Automatic Speech Recognition and Understanding, USA, 2003

[4] O. Viikki, D. Bye, and K. Laurila, "A recursive feature vector

normalization approach for robust speech recognition in noise",

Proc. of International Conference on Acoustics, Speech, and

Signal Processing, pp 733-736, Seattle, WA, USA, 1998.

[5] M. Vasilache, J. Iso-Sipilä, and O. Viikki, ”On a practical

design of a low complexity speech recognition engine”, ICASSP

2004, IEEE, Montreal, Canada, pp. 113-16, 17-21 May 2004

[6] D. H. Klatt, “Software for a cascade/parallel formant

synthesizer”, Journal of the Acoustical Society of America, vol. 67,

pp. 971-995, 1980

[7] D.H. Klatt, and L.C. Klatt. “Analysis, synthesis, and perception

of voice quality variations among female and male talkers”,

Journal of the Acoustical Society of America, 87(2), 1990, p 820.

[8] M. Moberg, K. Pärssinen, and J. Iso-Sipilä, “Cross-Lingual

Phoneme mapping for Multilingual Synthesis Systems”, In

Proceedings of ICSLP 2004, Jeju, Korea, 2004

 [9] A. Black, P. Taylor, and R. Caley, 1999. The festival speech

synthesis system, system documentation, Centre for Speech

Technology Research, University of Edinburgh.

I ­ 1084

