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ABSTRACT 
Traditionally, speech recognition system is established assuming 

that acoustic and linguistic information sources are independent. 

Parameters of hidden Markov model and n-gram are estimated 

individually and then plugged in a maximum a posteriori

classification rule. However, acoustic and linguistic features are 

correlated in essence. Modeling performance is limited 

accordingly. This study aims to relax the independence assumption 

and achieve sophisticated acoustic and linguistic modeling for 

speech recognition. We propose an integrated approach based on 

maximum entropy (ME) principle where acoustic and linguistic 

features are optimally merged in a unified framework. The 

correlations between acoustic and linguistic features are explored 

and properly represented in the integrated models. Due to the 

flexibility of ME model, we can further combine other high-level 

linguistic features. In the experiments, we carry out the proposed 

methods for broadcast news transcription using MATBN database. 

We obtain significant improvement compared to conventional 

speech recognition system using individual maximum likelihood 

training. 

1. INTRODUCTION 
Automatic speech recognition has been increasingly important in 

many human-machine interaction systems. How to build a 

desirable classification procedure is critical to assure system 

performance. Following Bayesian decision theory, speech 

recognition endeavors to find the most likely word sequence Ŵ
through maximizing a posteriori (MAP) probability given an 

observed speech sentence X
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In (1), )( WXp  represents acoustic likelihood of matching signal 

X  with hidden Markov models (HMM’s) for W . The prior 

probability )(Wp  serves as language model characterizing the 

linguistic regularities in natural language. N-gram model is popular 

to explore local lexical characteristics from text documents. 

Undoubtedly, the estimation of HMM’s  and n-grams  plays 

an important role in speech recognition system. In the literature, 

maximum likelihood (ML) criterion is widely applied for 

parameter estimation. The estimated parameters can attain the 

largest likelihood score using training data. However, higher 

likelihood does not guarantee better classification. To improve 

classification performance, it is beneficial to directly enhance 

model discriminability. The minimum classification error (MCE) 

and maximum mutual information (MMI) criteria were proposed 

for discriminative modeling of acoustic [1][9][14] as well as 

linguistic features [2][11]. Under the assumption of independence 

between acoustic and linguistic events, parameters of HMM and n-

gram were optimized individually. These parameters were used to 

calculate acoustic )( WXp  and linguistic )(Wp  likelihoods to 

determine the optimal word sequence Ŵ  according to plug-in 

MAP decoding in (1). Nevertheless, considering the hierarchical 

structure from phonetic-level matching to sentence-level matching, 

such assumption was unrealistic to estimate truly optimal acoustic 

and linguistic model parameters. In [13], transition weight and 

language model in finite state decoding graphs were 

simultaneously optimized under MCE criterion. In [7], HMM and 

unigram features were induced for hidden condition random fields 

(HCRFs) based phone classification. Maximum conditional 

likelihood criterion was used for parameter estimation. Here, we 

systematically build an integrated model combining HMM and n-

gram features using the maximum entropy principle for continuous 

speech recognition. More importantly, we present the modularized 

framework for joint estimation of acoustic and linguistic 

parameters. The dependence between acoustic and linguistic 

features is properly considered. In the experiments on large 

vocabulary continuous speech recognition (LVCSR), we illustrate 

the effectiveness of using integrated ME approach compared to 

conventional ML training in plug-in MAP classification system.

2. MAXIMUM ENETROPY PRINCIPLE 
Statistical modeling approaches are crucial for many pattern 

recognition applications. Among them, the maximum entropy (ME) 

principle is very attractive because model parameters are 

calculated with maximum randomness. In application of speech 

recognition, ME estimation was first successfully applied for 

language modeling [6]. Hybrid language models combining n-

gram, syntactic and semantic regularities were developed [4][10]. 

Using these models, different linguistic features were integrated 

delicately. We also exploited a discriminative ME language model 

incorporating new features from acoustic events [3]. Recently, ME 

approach was extended to direct modeling [12] of acoustic HMM’s. 

All of these methods achieved desirable model perplexity and 

recognition accuracy. 

Basic idea of ME principle [8] intends to completely model 

what we observe, and assume nothing about what we do not 

observe. Using ME approach, all information sources are 

formulated as constraint sets. Under these constraints, we 

maximize the entropy and find the optimal model )(yp . Namely, 

we restrict the estimated model to be consistent with all the 

information sources we have and simultaneously make the model 

distribution as uniform as possible. Let Fff ,,1  denote the 

feature set specifying the properties that we want to integrate in the 

model. Feature functions can be defined using zero-one delta 

function 
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Then, we calculate the expectation of feature functions with 

respect to empirical distribution )(~ yp  and actual distribution 

)(yp  as follows 
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where R is the number of training samples. Because the actual 

model encapsulates all information sources, the expectation 

functions should satisfy the equality 

Fifpfp ii ,1,for),()(~ .                    (5) 

To solve constrained optimization problem, the Lagrange 

optimization procedure is applied by merging multipliers }{ i

in the entropy based objective function 
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Through maximizing ),( pH , we yield the ME model expressed 

in a form of log linear or Gibbs distribution. 
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To determine Lagrange multipliers, the generalized iterative 

scaling (GIS) algorithm [5] can be adopted. We briefly describe 

GIS algorithm below. 

Input: Feature functions Fff ,,1  & empirical distribution )(~ yp

Output: Optimal Lagrange multipliers ˆ

1. Initialization with },,1,0{ Fii

2. For each Fi ,,1 , update i  based on 
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3. Go to step 2 if i  has not converged. 

After finding optimal parameters ˆ , we calculate ME model using 

(7). This ME approach has achieved great success in language 

modeling [6] )()( Wpyp  and recently been explored in 

acoustic modeling [12] )()( WXpyp .

3. ACOUSTIC AND LINGUISTIC MODELING 
No matter using ML, MMI, MCE or ME criterion, acoustic and 

language models were separately estimated for plug-in MAP 

speech recognition. The dependencies between acoustic and 

language models were neglected in model estimation. Strictly 

speaking, HMM and n-gram parameters express the information 

sources in different levels conveying important cues for finding 

reliable word candidates underlying input speech signal. These two 

model sets should be jointly established in a consistent way or 

following the same objective function. To release the 

independence assumption, one statistically attractive approach is to 

adopt ME principle simultaneously for acoustic and linguistic 

modeling. In what follows, we construct a modularized ME 

framework integrating acoustic and linguistic features for building 

speech recognition system. 

3.1 Joint Acoustic and Linguistic Models 

When jointly estimating HMM  and n-gram  parameters, 

we should consider state S  and mixture component L  sequences 

for directly representing the posterior distribution )( XWp

LS

XLSWp
,

),,(  used for MAP classification in (1). New 

parameters  should contain all acoustic and linguistic features 

characterizing the parametric distributions of HMM’s and n-grams. 

According to ME principle, we estimate posterior distribution 

),,( XLSWp  via maximizing the conditional entropy. ME 

Lagrangian function is yielded by 
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Parameters turn out to be the Lagrange multipliers for n-gram L

and HMM A , },{ ALLA . More specifically, we can 

define the feature functions ),,,(LA LSXWfi  corresponding to n-

gram, HMM initial state probability, state transition probability, 

mixture weight, first-order statistics and second-order statistics of 

observations as follows 
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where )(  is a delta function, and i , t  and d  are indices of 

word, frame and dimension, respectively. Using these linguistic 

and acoustic features },,,,,{ 21LLA mma fffffff , ME 

constraints are setup by 
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where ),,( XWLSp  is used for encoding the latent variable based 

on current estimation because we can not determine the empirical 

probability ),,,(~ LSXWp from training data. In this way, EM-IS 

algorithm [16] is adopted to estimate ME model with hidden 

variables. To reduce the computation complexity, we assume 

)()(~ XpXp  for calculating the expectation function 
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Then, we apply these features and constraints for estimation of 

optimal linguistic L  and acoustic },,,,{ 21A mma

parameters. Notably, the joint distributions of different parameters 

are considered in parameter estimation. Dependencies are 

characterized implicitly. Having all estimated parameters, the 

integrated ME posterior probability model is generated by 
F
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with normalization term )(Xp . Here, we directly estimate the 

posterior probability using ME approach so that HMM and n-gram 

parameters can be optimized simultaneously. 

3.2 Relations of Feature Functions to HMM and N-Gram 

Feature functions are used to determine the scope of the 

knowledge sources. It is desired to extract knowledge from 

HMM’s and n-gram for ME modeling. We would like to expand 

posterior distribution to express the specification of feature 

functions for HMM and n-gram features. Using continuous-density 

HMM parameters dlstttt tt
slpsspspBA ),(),(),({},,{ 11

}, 2
dls tt

 and n-gram parameters )}({ 1
1

i
nii wwp , the posterior 

probability is expressed as 
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After careful arrangement and neglecting normalization term 

)(Xp , this posterior distribution can be represented in a consistent 

form consisting of different sets of log linear distributions 
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In this way, we derive the feature functions in (11)-(16). The 

information sources of HMM and n-gram can be properly 

extracted and incorporated in the integrated ME model. 

3.3 Implementation Issues 

In our implementation, we adopt N-best lists to approximate 

the denominator term in the objective function when computing 

the posterior probability. Viterbi alignment is performed to find the 

optimal state Ŝ  and mixture component L̂  sequences 

corresponding to each word sequence in N-best list. Interestingly, 

ME objective function can be also represented as 
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where
WM  is the competing set of word sequence W. By partially 

differentiating (22) with respect to LA
i , the actual expectation 

function can be approximated by considering all possible word 

sequences in N-best list
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Using this new ME constraints, the learning rule of Lagrange 

multipliers in EM-IS algorithm can be updated by 
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The implementation procedure of proposed method is shown 

in Figure 1. The training speech data are first recognized to extract 

competing information using a seed HMM and n-gram models. 

Through EM-IS algorithm, the acoustic and linguistic features are 

integrated. We finally estimate the integrated acoustic and 

linguistic ME models for speech recognition. Generally, the 

proposed integrated ME is similar to HCRFs [7] regarding the joint 

acoustic and language modeling. However, in HCRFs, model 

distribution is defined using a Gibbs distribution with 

parameters  estimated by maximizing the conditional log-

likelihood of training data. The integrated ME modeling performs 

constrained optimization without specifying the form of model 

distribution. The model with maximum uncertainty is selected.   

Acoustic

Features

Training

Data

Linguistic

Features

Language

Model

Acoustic

Model

First Pass

Recognition

Competing

Information

Extraction

Lf Af

EM-IS Algorithm

Integrated  ME Model

Figure 1. Implementation procedure of integrated ME model. 

4. EXPERIMENTAL RESULTS 
In the experiments, we estimated the seed speaker-independent 

HMM models using the benchmark Mandarin speech corpus 

TCC300, which was recorded in office environment using close-

talking microphone. Each Mandarin syllable was modeled by right 

context-dependent states with at almost 32 mixture components. 

We trained sub-syllable HMMs for Mandarin speech. Feature 

vectors consisted of twelve Mel-frequency cepstral coefficients, 

one log energy and their first derivation. Here, another speech 

corpus, Mandarin Across Taiwan Broadcast News (MATBN) was 

applied for environmental adaptation adjusting acoustic models 

from TCC300 to MATBN database via maximum a posteriori
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(MAP) adaptation. MATBN database contained a total of 198 

hours of broadcast news from the Public Television Service 

Foundation (Taiwan) and was arranged by Academic Sinica, 

Taiwan. All recordings were made in stereo with a 44.1 kHz 

sampling rate and 16 bit resolution via a single channel 

microphone. Signals were down-sampled to 16 kHz. Totally, we 

selected 1060 conversations about 270 minutes for acoustic model 

adaptation, and another 250 sentences about 30 minutes for testing. 

The adaptation data was also used to extract N-best list. In our 

experiments, only top one competing sentence was explored. 

Using Katz back-off smoothing, baseline ME bigram language 

model was trained using Academic Sinica CKIP balanced corpus 

constructed by about five million words with lexical size of 32,909. 

In the experiments, we focused on three major parameters, 

including n-gram, state transition (Trans.) and first-order 

observation parameters (Obs1.). To evaluate speech recognition 

performance, we report syllable, character and word error rates. In 

Table 1, we show the performance with individually updated 

parameters. Baseline system adopts conventional HMM and n-

gram parameters. 

Table 1. Evaluation for different updated parameters 

Maximum Entropy 
Baseline 

N-gram Trans. Obs1.

SER (%) 29.1 28.6 (1.7) 28.6 (1.7) 28.5 (2.2) 

CER (%) 36.8 35.3 (4.1) 36.4 (1.1) 35.9 (2.4) 

WER (%) 48.9 46.9 (4.1) 48.3 (1.2) 47.8 (2.2) 

Interestingly, we obtain desirable syllable error rates via updating 

observation parameters while good word error rates are achieved 

by updating n-gram parameters. This is reasonable because 

observation parameters play the critical role for modeling acoustic 

properties, which affects syllable error rate significantly. N-gram 

parameters are used to characterize word association so that word 

accuracy can be improved. 

Table 2. Evaluation for combinations of updated parameters 

Maximum Entropy 
Baseline

Trans.+ Obs1. N-gram+Trans. N-gram+Obs1. All

SER (%)  29.1 28.1(3.4) 28.0(3.9) 28.0(3.9) 27.8(4.5)

CER (%) 36.8 35.7(3.0) 35.1(4.6) 34.9(5.2) 34.6(6.0)

WER (%) 48.9 47.6(2.7) 46.5(4.9) 46.5(4.9) 46.0(5.9)

We also implemented the experiments using integrated model 

to illustrate the effectiveness of different parameter combinations. 

Error rates using different parameter combinations are shown in 

Table 2. We find that integrated parameters achieve better 

improvements than using individually updated parameters. 

Updated n-gram parameters have slight improvement of syllable 

error rate with 1.7% and combined n-gram and acoustic features 

can achieve 3.9%. Namely, combining language and acoustic 

models in ME model does improve speech recognition. 

Furthermore, we obtain the best word error rate improvement with 

5.9% based on integrated model with all updated parameters. 

5. CONCLUSIONS 
We have presented a joint modeling approach to acoustic and 

linguistic features to effectively estimate correlated parameters for 

speech recognition. This approach released the independence 

assumption which was made by many speech recognition systems. 

Importantly, we developed a ME framework jointly merging 

HMM and n-gram features and modeling their dependencies in a 

consistent and optimal fashion. Specially, ME model involved a 

constrained optimization procedure and was powerful for 

knowledge integration. In the experiments on broadcast news 

transcription, we obtained desirable performance compared to 

conventional recognition system using independent HMM and n-

gram parameters. 

6. REFERENCES 
[1] L. Bahl, P. Brown, P. de Souza and R. Mercer, “Maximum 

mutual information estimation of hidden Markov model 

parameters for speech recognition”, in Proc. of ICASSP, vol. 

1, pp. 49-52, 1986. 

[2] Z. Chen, K.-F. Lee, M.-J. Li, “Discriminative training on 

language model,” in Proc. of ICSLP, pp. 16-20, 2000. 

[3] C.-H. Chueh, T.-C. Chien, and J.-T. Chien, “Discriminative 

maximum entropy language model for speech recognition,” 

in Proc. of INTERSPEECH, pp. 721-724, 2005. 

[4] C.-H. Chueh, J.-T. Chien and H. Wang, “A maximum 

entropy approach for integrating semantic information in 

statistical language models”, in Proc. of ISCSLP, pp. 309-

312, 2004. 

[5] J. Darroch and D. Ratcliff, “Generalized iterative scaling for 

log-linear models”, The Annals of Mathematical Statistics,

vol. 43, pp. 1470-1480, 1972. 

[6] S. Della Pietra, V. Della Pietra, R. L. Mercer and S. Roukos, 

“Adaptive language modeling using minimum discriminant 

estimation”, in Proc. of ICASSP, vol. 1, pp. 633-636, 1992. 

[7] A. Gunawardana, M. Mahajan, A. Acero and J. C. Platt, 

“Hidden conditional random fields for phone classification”, 

in Proc. of INTERSPEECH, pp. 1117-1120, 2005. 

[8] E. Jaynes, “Information theory and statistical mechanics”, 

Physics Reviews, vol. 106, no. 4, pp. 620-630, 1957. 

[9] B.-H. Juang and S. Katagirl, “Discriminative learning for 

minimum error classification”, IEEE Trans. Signal 

Processing, vol. 40, pp. 3043-3054, 1992. 

[10] S. Khudanpur and J. Wu, “Maximum entropy techniques for 

exploiting syntactic, semantic and collocational 

dependencies in language modeling”, Computer Speech and 

Language, vol. 14, pp. 355-372, 2000. 

[11] H.-K. J. Kuo, E. Fosle-Lussier, H. Jiang and C.-H. Lee, 

“Discriminative training of language models for speech 

recognition”, in Proc. of ICASSP, vol. 1, pp. 325-328, 2002. 

[12] H.-K. J. Kuo and Y. Gao, “Maximum entropy direct model 

as a unified model for acoustic modeling in speech 

recognition”, in Proc. of ICSLP, 2004. 

[13] S.-S. Lin and F. Yvon, “Discriminative training of finite state 

decoding graphs”, in Proc. of INTERSPEECH, pp. 733-736, 

2005.

[14] Y. Normandin, R. Cardin and R. De Mori, “High-

performance connected digit recognition using maximum 

mutual information estimation”, IEEE Trans. Speech and 

Audio Processing, vol. 2, pp. 299-311, 1994. 

[15] R. Rosenfeld, “A maximum entropy approach to adaptive 

statistical language modeling”, Computer Speech and 

Language, vol. 10, pp. 187-228, 1996. 

[16] S. Wang, D. Schuurmans, F. Peng and Y. Zhao, “Learning 

mixture models with the regularized latent maximum entropy 

principle”, IEEE Trans. Neural Networks, vol. 15, no. 4, 

2004.

I  1064


