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ABSTRACT

The n-gram language model adaptation is typically formulated 

using deleted interpolation under the maximum likelihood 

estimation framework. This paper proposes a Bayesian learning 

framework for n-gram statistical language model training and 

adaptation. By introducing a Dirichlet conjugate prior to the n-

gram parameters, we formulate the deleted interpolation under 

maximum a posterior criterion with a Bayesian learning 

procedure. We study the Bayesian learning formulation for n-gram

and continuous n-gram language models. The experiments on

North American News Text corpus have validated the

effectiveness of the proposed algorithms. 

1. INTRODUCTION 

A typical large vocabulary continuous speech recognition 

(LVCSR) system consists of two components. An acoustic 

component matches the input sound wave into words in a 

vocabulary. The second component, which incorporates a

statistical language model (LM), estimates the probability of a 

word hypothesis given the word history. The most popular

statistical LM is the n-gram model, which estimates the probability

of each word depending on the n-1 words that precede it from a 

large training corpus.

Assuming ample training data, the n-gram language models are 

still far from optimal. Studies show that they are extremely

sensitive to changes in the style, topic or genre. The mismatch

between training and test domains can lead to drastic performance

degradation [1]. Different approaches have been studied to

improve robustness of LM. Among many others, class-based n-

gram shares parameters within a word-class to alleviate the data 

sparseness problem [2]; LM adaptation aims at bridging the 

mismatch between the models and the test domain [3].

It is generally the case that there are much less domain specific

data than general data. The key of LM adaptation is to make good 

use of the domain specific data to effectively bring the baseline

model towards the test domain. One typical adaptation technique is 

called deleted interpolation which combines the flat, reliable 

general model (baseline model) with the sharp, volatile domain

specific model. Other techniques attempt to inject human

knowledge of language into the model. Rosenfeld [1] indicates that

     “One of the perils of using human knowledge is that it 

is often overstated and sometimes wrong. Thus a better 

solution might be to encode such knowledge as a prior in

a Bayesian updating scheme…”

A typical n-gram LM is trained under maximum likelihood

estimation (MLE) criterion. In this paper, we will study the 

Bayesian learning formulation for n-gram LM adaptation. By

introducing a Dirichlet conjugate prior distribution to each of the 

n-gram parameters, we can formulate the n-gram learning under 

the maximum a posterior (MAP) criterion [3,4]. The LM 

adaptation becomes a natural extension of n-gram modeling 

process. Under the Bayesian learning framework, an incremental

adaptation procedure is also proposed for dynamically updating of 

cache-based n-gram.

This paper is organized as follows. In Section 2, we formulate 

the traditional n-gram LM and its cache-based adaptation under the

Bayesian learning; In Section 3, we extend the formulation 

towards the continuous n-gram LM; In Section 4, we report 

experiment results on a LDC database; Finally, we conclude in

Section 5. 

2.  N-GRAM MODEL 

An n-gram LM is usually used in the context of a Bayes classifier,

where it can play the role of the prior in speech recognition. Given

an acoustic signal , the goal is to find the sentence WO  that is

most likely to have been spoken 

' arg max ( / ) arg max ( / ) ( )
W W

W p W O p O W p W (1)

where n-gram LM ( )p W represents the prior of the language. Let

1 2{ , ,... }TW w w w denote one of the possible word strings, each of 

the word is drawn from a vocabulary of I words {1,..., }tw I .

( )p W can be written as

1 1
1 ,

( ) ( | { ,..., }) ( / ) ih
T C

t t n t
t i

p W p w w w p i h
h

(2)

where 1 1( / ) ( /{ ,..., } )t t n tp i h p w i w w h and is the count 

of occurrence of the string

ihC

1 1{ ,{ ,..., } }t t n tw i w w h .

The quality of a given n-gram LM on a corpus D of size T is 

commonly assessed by the log-likelihood probability

,

1
( | ) log ( / )ih

i h
LL D C p i h

T
(3)

which is described as an empirical estimate of the cross-entropy

[4] of the true data distribution with regard to the modelihC

( | ) ( | )H D LL D . The performance of a LM is often 

reported in terms of perplexity [5]
( | )( | ) 2H DPP D       (4)

The perplexity can be interpreted as the average branching 

factor of the language according to the model. The cross-entropy

measures the match between two distributions. The perplexity is a 

function of both the model and the language. As a function of 

model, it measures how good the model matches the test data. As a

function of the language, it estimates the entropy or complexity of

that language.
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2.1. Model Smoothing and Adaptation

To facilitate the discussion, let’s define some notions. We denote 

as( )tp w i i  for unigram and  and 

as

1( ,t tp w i w j)

)1( |t tp w i w j ij , and |i j for bigram. As unigram i  is 

the marginal probability of bigram ij , we have i i
j

j , and 

, the unigram count is the sum over all the respective

bigram counts. During model training, Eq.(3) serves as the

optimization criterion. For unigram and bigram, it can be rewritten

in the form of a multinomial model of the parameters

i
j

C ijC

.

11

( | ) logi

I I
C

unigram unigram i ii

ii

p D C (5)

||

1 11 1

( | ) logij

I I I I
C

bigram bigram ij i ji j

i ji j

p D C (6)

In the formula, we have the so-called naïve assumption that n-

gram are independent of each other. Given a corpus generated by

the same model, the parameters  can be estimated with MLE,

subject to the constraints of 1i
i

iC

and , as follows| 1i j
i

arg max ( | )ML p D (7)

/i i
i

C and (8)| /i j ij ij
j

C C

MLE assigns zero probability to unseen n-gram. To address

data sparseness, higher order n-gram is usually “smoothed” by

lower order estimate [5].  The smoothing technique combines

knowledge sources at different levels to improve robustness in n-

gram prediction. For example, a bigram is backed-off by unigram

| |
ˆ (1 )i j i i j , or 

(9)ˆ (1 )unigram bigram

In adaptive language modeling, we first build domain

independent, static n-gram, then we adapt the static n-gram by

interpolating the static model with a dynamic cache model that is 

derived from the current, domain specific topical documents [1].

ˆ (1 )static cache        (10) 

As given in Eq.(9) and Eq.(10), both backoff smoothing and 

cache LM are motivated by the idea to combine a flat and reliable 

model with a sharp and volatile model. The weighting parameters

 are typically optimized on held-out data using cross-validation

procedure called deleted interpolation, which can be formulated

under a maximum a posteriori (MAP) adaptation strategy [3], also 

called Bayesian learning.

2.2. Bayesian Learning

In Eq.(5) and Eq.(6), we note that the bigram can be decomposed

into I independent unigram-equivalents. For simplicity, we

hereafter use unigram formulation. In MAP, a practical candidate 

for the prior distribution of the unigram is the Dirichlet 

density [3], also known as hyperparameter [6], over each 

of the parameter

im M

i .

1

1
( ) i

I m
i

i
p (11)

where is a normalized measure over theim I component, subject 

to
1

1
I

i
i

m , and is a positive scalar. We have as many

hyperparameters im M as the parameters i . The set of 

hyperparameters also includes . The probability of generating a

text corpus is obtained by integrating over the parameter space:

( ) ( | ) ( )p D p D p d (12)

This integration can be easily written down in a closed form due to 

the conjugacy between Dirichlet as in Eq.(11) and multinomial

distribution as in Eq.(6). Instead of finding  that 

maximizes ( | )p D  with MLE, we maximize a posterior (MAP)

probability as follows:

arg max ( | ) arg max ( | ) ( ) / ( )

arg max ( | ) ( )

MAP p D p D p

p D p

p D

(13)

The MAP solution to Eq.(13) is different from the MLE one in

that the former uses a distribution to model the uncertainty of the

parameter , while the latter gives a point estimation [5][6]. We

rewrite Eq.(13) as Eq.(14) using Eq.(5) and Eq.(11). 
1

arg max i iC m
MAP i

i
      (14)

With the conjugacy between Dirichlet and multinomial

distributions, Eq.(14) can be seen as a Dirichlet function of 

given M , or a multinomial function of M given . With given 

priors M , The MAP estimation is therefore similar to the MLE

problem which is to find the mode of the kernel density in Eq.(14).

(1 )i im if (15)

where /i if C C , /( )C and . Instead of 

fixing

i
i

C C

 as a constant through deleted interpolation,  is here 

estimated through an estimate with prior knowledge and the given 

statistics .C  serves as a weighting factor between the prior and

the current observations. In different modeling scenarios, there 

could be different prior knowledge. For example, in the case of 

bigram smoothing, the prior knowledge is motivated to model the

unigram as in Eq.(9); in the case of cache-based LM, the static LM

is taken as the prior as in Eq.(10). Eq.(15) offers a Bayesian

learning solution to the problem of deleted interpolation.

2.3. QB Estimation for Incremental Learning 

The Bayesian learning procedure in Section 2.2 is another 

interpretation of the MAP strategy in [3]. The formulation of

Eq.(15) combines two knowledge sources using one as the prior 

and the other as the current observation, assuming that the prior is

known and static while the current observation is available all at 

once. However, this is not the case in on-line application where the 

observation comes in sequence. The idea of cache adaptation is to

benefit from the continuously developing history to update the 

static model towards the intended topic, or even evolving topics. In 

an on-line system, it is of practical use to devise such an

incremental learning mechanism that adapts both parameters and 

the prior knowledge over time. The quasi-Bayes (QB) method
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offers a solution to it [4,7]. In general, suppose that we have a 

sequence of sub-corpus 1 2{ , ..., }n
nD D D D , The QB method

approximates the posterior density by the closest 

tractable prior density with

1( | )np D

( 1)( | )np M
( 1)nM evolved from

historical corpus .1nD

( 1)

( ) 1

1

1

arg max ( | ) arg max ( | ) ( | )

arg max
n

i i

n n
nQB

I C m
i

i

p D p D p Dn

(16)

QB estimation offers a recursive learning mechanism, starting with

a hyperparameter set (0)M and a cache sub-corpus , we

estimate

1D

(1)M and , then 
(1)
QB

(2)M and and so on until 
(2)
QB

( )nM

and as observations arrive in sequence. The updating of

parameters can be iterated between the reproducible prior and 

posterior estimates as in Eq.(17) and Eq.(18), called Algorithm 1.

( )n
QB

i) Reproduce prior parameters :( 1) ( )n nM M

( ) ( 1) ( )ˆ /
n n n

i i im m C (17)

ii) Re-estimate parameters as in Eq.(8) :( )( ) nn
QBM

( ) ( ) ( )ˆ /
n n

i i i
i

m m
n

(18)

The scalar factor can be seen as a forgetting parameter. When

is big, the updating of hyperparameters favors the prior.

Otherwise, when small, current observation is given higher 

attention.

3. CONTINUOUS N-GRAM MODEL 

Consider the n-gram LM as discrete model at integer order n, the 

continuous n-gram model, also called aggregate Markov model 

[8], are intermediate between different order of n-gram in terms of

size and accuracy. With continuous n-gram, we introduce Z hidden 

variables as the “soft” word classes. An n-gram probability is

given as a mixture of probability

where  represents the history of context,

1
( / ) ( / ) ( / )

Z

z
p i h p i z p z h

h ( / )p z h denotes the 

probability that history h is mapped to class z, ( / )p i z denotes the 

probability that words in class z are followed by the word i. For

bigram, we have ( / ) ( / )p i h p i j . Note that when 1Z , a 

continuous bigram is reduced to unigram, when Z I , the 

continuous bigram becomes a full bigram. By adjusting Z,

continuous bigram is scalable between unigram and bigram. For 

simplicity, let  denote|i zp ( / )p i z , denote|z jp ( / )p z j  hereafter. 

The continuous n-gram model has two obviously advantages 

over the discrete n-gram: i) Assuming vocabulary size I, it reduces

the parameter space from potentially  to ; ii) With the 

hidden variables representing the word classes, one is able to apply

EM algorithm to estimate the parameters and to find word clusters

at the same time under the MLE criterion.  In this section, we will

introduce the Bayesian learning to the continuous n-gram training. 

Let’s rewrite Eq.(6) using soft word classes,

I I 2I Z

| |
1 1 1

log ( | ) log
I I Z

ij i z z j
i j z

p D C p p

j

(19)

The parameter set together with the word classes z

can be estimated by the EM algorithm. In the E-step, the posterior

probability

| |{ , }i z z jp p

| ( / , )z ijp p z i is estimated given the current 

parameters | |{ , }i z z jp p

| | | |/z ij i z z j i z z jz |p p p p p (20)

In the M-step, we maximize [4] with respect toˆ( | )Q ˆ and

derive the new ML estimate by

| |1 1 1
ˆ /

I I I

i z ij z ij i j z i jj i j
p C p C |p

|p

(21)

| |1 1 1
ˆ /

I Z I

z j ij z ij ij z iji z i
p C p C (22)

3.1. Bayesian Learning

Similar to the formulation in Section 2.2, we introduce a Dirichlet

conjugate prior as the hyperparameters { , , }iz zj  for the

parameters set | |{ , }i z z jp p , with 
1 1

1
I Z

iz zj
i z

.

Assuming the variables  and  are independent, similar to 

Eq.(11) and Eq.(14), we have the prior density function as

|i zp |z jp

11
| |

1 1 1

( ) jziz

Z I I

i z z j

z i j

p p p (23)

We apply the EM algorithm to iteratively calculate the posterior

expectation function ˆ( | )R  (E-step) as in Eq.(20),  and 

maximize it with respect to ˆ  so as to find new MAP estimate

(M-step), which can be given in a closed-form solution.

| | |
1 1 1

ˆ / [
I I I

i z ij z ij iz i j z i j i z
j i j

p C p C p ] (24)

| |
1

ˆ /( )
I

z j ij z ij zj j
i

p C p C (25)

Given the priors { , , }iz zj , Eq.(24) and Eq.(25) are 

interpreted as a smoothing between the known priors and the 

current observations, or cache corpus.

3.2. QB Estimation for Incremental Learning 

Following the quasi-Bayes assumption as in Eq.(16), a 

reproducible prior/posterior pair for QB estimation of continuous 

n-gram can be formulated as follows, called Algorithm 2.

i) Reproduce prior parameters :( 1) ( )n n

( ) ( 1) ( )
|1

/
In n n

ijiz iz z ijj
C p (26)

( ) ( 1) ( )
|1

/
In n n

ijzj zj z iji
C p (27)

ii) Re-estimate parameters :( )( ) nn
QB

( ) ( )
|

1
ˆ /

Zn n
i z iz iz

z
p and ( ) ( )

|
1

ˆ /
In n

z j zj zj
j

p (28)

where iz and zj as the expected counts of the respective

parameters, in analogy to the integer counts in Eq.(8).

4. EXPERIMENTS

I ­ 1047



The objectives of the experiments are to evaluate the performance

of proposed methods using a publicly available corpus. We design

four datasets from North American News Text Supplement corpus 

(LDC98T30). Corpus A (CA) contains text of 60 million words

extracted from LDC98T30 corpus of finance and business topics.

Corpus B (CB) contains text of 20 million words in the domains of

sports and fashion. Corpus B is divided into 5 adaptation blocks

for incremental training purpose. Corpus C (CC) is a combination

of Corpus A and B. Corpus D (CD) contains 20 million words in

the same domains as that of CA and CB. CD serves as the open 

test dataset. We construct a vocabulary for the top 50K high

frequency words derived from CA and CB, adding three tokens 

representing the sentence begin, the sentence end and the unknown 

words.

4.1. Batch Adaptation

The proposed Bayesian framework applies to both LM smoothing 

and cache-based LM adaptation, without loss of generality, we 

only report experiments of LM adaptation here in Table 1. We first 

train the bigram LM. We also train a continuous bigram LM with 

32 latent variables, amounting to a model of 3,200,000

free parameters . Both baseline LMs

are trained on CA (Case B1). We also adapt the LMs using CC in

Case B2. As CC includes domain text in CD, perplexity in open

test of Case B2 is improved over Case B1 as expected. In Case B3,

we examine how Bayesian learning helps accelerate the domain

adaptation using

32 50,000 2 | |{ , }i z z jp p

as a forgetting factor.

It is found that Case B3 adapts the model faster towards

intended domains with improved open test perplexity over the 

MLE. The same effects are observed in both bigram and

continuous bigram. Reducing accelerates further the model

adaptation. The continuous bigram reduces the number of free 

parameters over bigram at a cost of higher perplexity.

We have studied different number of latent variables 16, 32,

64 and 128.  As latent variable increases, the number of free 

parameters increases and lower perplexity is obtained. 

Case B1:

MLE

on CA 

Case B2: 

MLE

on CC 

Case B3: Case B1 

+ Bayesian on CB 

( 0.8 )

bigram 148/189 153/167 151/166

continuous bigram 256/337 267/329 271/306

Table 1 Perplexity of bigram LM (close/open test) in 3 cases 

4.2. Incremental Adaptation 

We report incremental adaptation in Table 2. Note that the choice 

of initial hyperparameter has impact on the adaptation path. The 

initial hyperparameters can be estimated from training data in an 

empirical Bayes manner. We follow the formulation introduced by

Huo [7] and Chien [4]. In bigram LM adaptation, we choose the 

initial hyperparameter to be the bigram count resulting from

Case B1.  Then we proceed with Algorithm 1. In continuous 

bigram adaptation, we choose the initial hyperparameter

to be the expected counts resulting from Case B1. 

Then we proceed with Algorithm 2:

(0)
im

(0) (0)
{ , }iz zj

(0)
|

1
1

I

z ijiz
j

p and (29)
(0)

|
1

1
I

z ijzj
i

p

In addition, we train a class-based bigram model following the 

formulation introduced by Brown et al. in [2] with 1,800 classes

that comes with 3,290,000 1800 1800 50,000 free parameters,

which are comparable to those for continuous bigram.

Comparing continuous bigram and class-based bigram, we 

find that continuous bigram generally outperforms the class-based 

bigram in open tests. This can be credited to the soft-clustering

strategy that continuous n-gram adopts as opposed to the hard 

clustering decision in class-based n-gram.

Comparing Case I and Case B2, we find that incremental

adaptation can be more effective than batch adaptation with the 

appropriate parameter ( ) settings.

We have studied the case of bigram. Note that typically, it is 

easier to report improvements on bigram models than trigram

models. We will extend the proposed framework to study the 

trigram behavior in the future. 
Case B1: MLE 

on CA 

Case I: Case B1+ Bayesian

on CB ( 0.8 )

bigram 148/189 151/173

continuous bigram 256/337 263/294

class-based bigram 225/351 261/317

Table 2. Perplexity of bigram LM (close/open test) in 3 cases 

5. CONCLUSION 

We have proposed a Bayesian learning approach to n-gram

language modeling. The learning approach offers several 

interesting properties for language modeling: 1) an interpretation 

for the smoothing or adaptation of language model as a weighting 

between prior knowledge and current observations. 2) The 

Dirichlet conjugate prior not only leads to a batch adaptation

procedure but also a quasi-Bayes incremental learning strategy for 

on-line language modeling. The Bayesian learning framework has 

shown to be effective in both n-gram and continuous n-gram LM 

adaptation.
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