PROFILE BASED COMPRESSION OF N-GRAM LANGUAGE MODELS

Jesper Olsen and Daniela Oria

Multimedia Technologies Laboratory
Nokia Research Center
Helsinki, Finland

jesper.olsen@nokia.com, daniela.oria@nokia.com

ABSTRACT

A profile based technique for compression of n-gram language
models is presented. The technique is intended to be used in
combination with existing techniques for size reduction of n-gram
language models such as pruning, quantisation and word class
modelling. The technique is here evaluated on a large vocabulary
embedded dictation task. When used in combination with
quantisation, the technique can reduce the memory needed for
storing probabilities by a factor of 10 or more with only a small
degradation in word accuracy. The structure of the language model
is well suited for “best-first” type decoding styles, and is here used
for guiding an isolated word recogniser by predicting likely
continuations at word boundaries.

embedded

Keywords: dictation,

systems.

n-gram language models,

1. INTRODUCTION

Speech recognition of large vocabulary natural language utterances
requires an accurate language model (LM) to guide the recogniser.
The dominant language model for this type of task has for the past
several decades been the N-gram language model [1]. The N-gram
model is conceptually a simple statistical model, which has the
advantage that it can be trained automatically from data without
the need to explicitly define syntactic rules for the language, or
encode domain information for the task it is used in. The main
disadvantages are that it typically requires large amounts of
domain specific data — often millions of words — to construct a
good model, and that the size of the resulting model tends to be
very big. The language model will often be the largest component
in the recogniser, and the size of it is therefore important: in real-
time applications, a compromise always has to be made between
the size of the language model that can be deployed, and the cost
of the hardware which is hosting the application.

2. BACKGROUND
N-gram language models model language as a Markov source of

order n-1: the probability of a word depends only on the past n-1
words. For high-end dictation systems n=3 (trigram) or higher is a

1-4244-0469-X/06/$20.00 ©2006 IEEE

I-1041

common choice, whereas for more low-end systems bigrams (n=2)
or even unigrams (n=1) are used. An n-gram model represents a
probability distribution over all n-1 length word sequences. This
means that the size (number of n-grams) in a unigram model is the
same as the size of the vocabulary, V. The size of higher order n-
gram models is significantly larger, a bigram model is potentially
of size V*V and a trigram model of size V¥*V*V. In practice it is
not possible to observe and train probabilities for all n-gram
sequences even when a very large training corpus is used.
Consequently it is common to use a “backoff” scheme [3], to
calculate the probability of hypothesised word sequences which do
not occur in the model by backing off to a lower order n-gram
model.

Several techniques have in the past been used for reducing the
size of n-gram models — most commonly these fall into the
categories pruning, quantisation and word class modelling.

5.1. Pruning

The size of an n-gram model tends to grow proportionally with the
size of the training corpus. Hence, one way to constrain the size of
the model is to limit the size of the training corpus [4]. However,
this approach makes poor use of the training data, and a better
approach is to train a model on all the data and afterwards prune
the model by removing n-grams. There are several ad hoc ways of
doing this, e.g. removing n-grams with low frequency counts [3],
or removing n-grams where backing off to a lower order n-gram
gives little loss in probability [4]. Probably the most theoretically
well founded approach is entropy based pruning [5] which is based
on removing the n-grams in the model which results in the lowest
increase in perplexity on the training data.

5.1. Quantisation

Each N-gram probability has to be represented in memory with a
certain number of bits (e.g. 32 bit C-floats). The idea behind
quantisation is that probabilities are stored as indexes to a
codebook, and that the number of bits required for the index is less
than the number of bits for the codebook probabilities. Basically
all n-gram models are quantised from the beginning, because they
are estimated based on frequency counts, and since many word
sequences by chance have the same frequency, the number of
unique probabilities is significantly smaller than the total number
of n-gram probabilities in the model. But quantisation can be taken
further than this by deliberately quantising probabilities using

ICASSP 2006

smaller codebooks. Codebooks with down to 32 elements (4-bit
indexes) have been used with little degradation [6], [7].
5.1. Word Class Modelling

Introduction of word classes can be used to reduce the size of the
vocabulary of the language model [8], and/or to improve the
probability estimates when training data is sparse — which it often
is. A moderate size reduction of the vocabulary will typically have
a much larger effect in the bigram and trigram sections of the
language model. Word classes can either be handcrafted to fit the
dictation task, or they can be derived using statistical clustering
techniques [9], which automatically discover relationships between
words. Handcrafting is typically only realistic for a smaller
number of word classes, but it has the advantage that the classes
are better understood (e.g. name classes: person, city, company, or
number classes: telephone, flight, money) and therefore are easier
to adapt to fit a specific task, user or location — this can even be
done dynamically if a changing “topic” can be identified [10].

3. N-GRAM PROFILES

The idea behind n-gram profiles is to order the n-grams with the
same history according to probability so that the most probable is
stored in position one, the second most probable in position two
etc. For example, the following is a profile for bigrams that have
the word YOUR in their history:

-0.857508 YOUR MESSAGE
-1.263640 YOUR OFFICE
-1.372151 YOUR ACCOUNT
-1.372151 YOUR HOME
-1.372151 YOUR JOB
-1.372151 YOUR NOSE
-1.372151 YOUR OLD
-1.517140 YOUR LOCAL
-1.736344 YOUR HEAD
-2.200477 YOUR AFTERNOON

Storing n-grams as profiles can in itself lead to memory reduction,
because some words — particularly when quantisation is used — will
have identical profiles or have profiles that are prefixes of longer
profiles. Hence, the same profile can be reused for different sets of
n-grams (the word pairs still need to be stored separately). The
profiles themselves can be stored in compressed form. This can be
done by “sampling” the profile, and interpolating the probabilities
that are not directly represented in the profile. The simplest
sampling approach is to use linear sampling — for instance by
including every second sample in the profile — and calculating the
value of the missing samples from their neighbours. However, it is
a characteristic of the n-gram profiles that the rate of change is
greater at the beginning of the profile than at the end, and a better
approach is therefore to use some kind of “logarithmic” sampling,

e.g.

i0=0
M

iy = iy + max(1,round(log;o(ix.;)/S))

where the scale factor, S, is used to control the spacing of the

sample indexes #;. which go into the compressed profile.
Regardless of what sampling algorithm is used, the

compressed profile can be expanded into an uncompressed profile

by using the stored samples to calculate the missing ones — e.g. by
linear interpolation it is possible to calculate the samples s;....,s,,
between sample £ and sample k+/ in the compressed profile
(z=0,...,n):

S=pitZ(Pi+-Pr)/n 2

4. STORAGE STRUCTURE

In this study, the language model is used in a scenario, where it
must be computationally cheap to predict word continuations from
a given word. This is achieved by storing the language model in a
structure containing the following components:

1. A VQ codebook with Q elements — the elements are
quantised logarithmic probabilities.

2. A profile codebook with P elements — each profile is an
array of indexes to the VQ codebook.

3. A unigram section consisting of two arrays where each

element is an index to the VQ codebook. The first holds
the unigram probability of each word, and the second
the backoff probability for “forgetting” that word
history in a bigram context [2].

4. A bigram or word-pair section which describes which
words are allowed to follow any other. This section has
V elements — one for each vocabulary word — and each
element holds an index to the profile codebook, and an
array which contains the word identities of the words
that are allowed to follow this particular word (bigram
histories). The words are ordered according to
likelihood.

5. EXPERIMENTAL SETUP

Language model compression is here evaluated in the context of
isolated word dictation (short pause required between words when
dictating). 25 speakers are represented in the test set with 240 test
utterances in addition to a short enrollment session, which is used
for acoustic model adaptation (1240 biphone HMMs, 2k Gaussian
mixtures). The n-gram language model used in this study was
trained on the basis of a 2 million word text corpus. The language
model is a bigram LM containing 23k unigrams and 255k bigrams.
The bigram perplexity of the test set is 75 using the uncompressed
language model.

Language model profile compression was evaluated in
combination with probability quantisation. Five different
quantisation levels were used: No quantisation, and quantisation
using a 32, 16, 8 and a 4 element VQ codebook (corresponding to
5, 4, 3 and 2 bit indexes). In combination with this, profile
compression with 5 different compression scales, S, was used (eq.
1): S=1000, 0.5, 0.1, 0.05, 0.01. The S=1000 profile compression
scale is loss less for the LM used in these experiments. To
illustrate these sampling scales, the five first samples selected to
represent a profile are:

S=1000 1 2 3 4 5
S=0.50 1 2 3 5 8
5=0.10 1 2 9 31 65
S5=0.05 1 2 16 71 156
5=0.01 1 2 71 497 1118

Table 1: first few indexes selected for profile sampling.

I-1042

5.1. Memory Requirements

The same storage structure is used regardless of whether
quantisation and profile compression is used. As described above
in section 4, the language model has four parts: VQ Codebook,
profile codebook, unigram section and word-pair section. The
word-pair section is the same for all the models used here. On
average each word in the vocabulary has NF=11.1 bigram
continuations. The total memory required for the word-pair section
is 603kByte. The VQ codebook is relatively small, between 16 and
128 byte for the four quantised model sets, and 47.6 kByte for the
baseline model set — which turns out to have only 11915 unique
probability values. The unigram section here is of size 184 kByte —
relatively large due to the fact that these probabilities were not
quantised in this study. That finally leaves the profile codebook,
which is the part of the structure which is directly affected by
quantisation and compression. The profile holds P profile arrays,
and the size of the structure can be calculated as

P
P*4+ len(p,)*sizeof VOIDX) ()
i=1
For the baseline LM, it is necessary to use 16-bit indexes to the
VQ codebook (VQIDX). For the quantised LMs, 8-bit indexes (or
less) can be used.

4. RESULTS

Table 2 below shows the word accuracy for recognition tests with
each of the model sets used in this experiment. Additionally the
following statistics for the profile codebook are given: number of
profiles, average profile length and finally size of the profile
codebook in kBytes - calculated using eq. 3, and assuming 8-bit
indexes for all the quantised codebooks.

The profile statistics in table 1 is illustrated graphically in
figure 1, 2 and 3. Figure one shows the number of profiles in the
codebooks, figure 2 the average profile length, and finally figure 3
the size of the profile codebook (number of elements rather than
kByte).

S=1000] S=0.5] S=0.1] S=0.05] S=0.01
No Q 4033/52| 4017/10| 3849/4| 3814/3| 381012
436kb| 103kb| 51kb| 45kb| 39kb
85.1%| 85.0%| 84.6%| 84.0%| 79.5%
Q32 3108/64| 2797/13| 1279/6| 905/5| 456/3
213kb 48kb 13kb 8kb| 4kb
85.0%| 85.0%| 84.6%| 84.1%| 81.2%
Q16 2454/78 | 1773/16| 566/8| 344/6| 151/4
202kb 36kb 7kb 4kb| kb
84.9%| 85.0%| 84.5%| 84.1%| 81.1%
Q8 937/164| 479/30| 154/12| 90/9| 42/5
157kb 17kb| 2.6kb 1kb| 0.4kb
73.7%| 84.7%| 84.2%| 83.7%.| 81.9%
Q4 297/356| 119/61| 44/22| 26/13] 14/5
107kb 8kb 1Ikb| 0.5kb| 0.1kb
84.0%| 83.7%| 824%| 81.8%| 783%

Table 2: Number of profiles, average profile length, size of profile
codebook and word accuracy for different quantisation and profile
compression settings.

4500

4000 = - -

35004 —

3000- | | |ONoQ

2500- L [HQ32

20004 —— (O0Q16

1500+ — [0O0Q8
o} i1

1000 0.5 0.1 0.05 0.01

Figure 1: Number of unique profiles for different profile
compression scales.

400

350
300 ONoQ
250 mQ32
fgg Q16
100. oas
50l mQ4
0.

1000 0.5 0.05 0.01

Figure 2: Average profile length for different compression scales.

250000

2000004
ONo Q
150000+ HQ32
100000- oa16
oaQs
50000+ HQ4
o+

1000 05 0.1 0.05 0.01

Figure 3: Size of profile codebook (sum of profile lengths) for
different profile compression scales.

I-1043

6. DISCUSSION AND CONCLUSIONS

In this paper a profile based structure was suggested for storing n-
gram language models. The main purpose of the structure is to
allow compression of the n-gram model by compressing and
sharing profiles through a profile codebook. It is interesting to
note, that for the language model used here, the profile format
achieves a significant memory reduction even when compression
or quantisation is not used. If all n-gram probabilities were unique,
then the profile codebook would have 23k entries, and on average
each profile would have a lengh of 11.9. This means that the
profile codebook would require 1.1 Mb storage (see eq. 3) — but in
fact it turns out that only 4033 profiles are unique (average length
52) and consequently only 436 kb storage is needed.

Probability quantisation is used to reduce the number of unique
probabilities that have to be represented. In this study, quantisation
was achieved using a k-means clustering algorithm on the
probabilities in the codebook. Only bigram probabilities were
quantised — unigram and backoff probabilities can be quantised
also, but because they are numerically in a different range, it is
better to use separate codebooks for this purpose.

Quantisation is very effective in reducing the memory
requirements for storing probabilities in a language model. 8-bit
quantisation (256 elements) is easily achieved, and even 5 and 4-
bit codebooks (32 and 16 elements) produce little degradation in
word accuracy. With 5-bit indexes, the profile codebook is reduced
in size by a factor of two while word accuracy is only marginally
lower (85.1%->85.0%).

Profile compression used on its own is more effective in
reducing the memory footprint needed for representing the profile
codebook than is quantisation used on its own — roughly by a
factor of two: at a reduction to 25% of the original codebook size,
the word accuracy is practically the same (0.1% lower absolute).

Quantisation and profile compression are not required to be
used independently — the profile encoding of the n-gram
probabilities benefits directly from quantisation in the sense that
far fewer unique profiles are needed when quantisation is used —
e.g. for 5 and 4-bit VQ codebooks and loss less profile encoding,
the number of profiles is reduced by respectively 30% and 40%.
With lossy profile compression the memory needed for storing
probabilities can be reduced by a factor 12 (436kb/36kb) with only
0.1% absolute loss of word accuracy (Q16, S=0.5). For the most
heavily compressed language model used here (Q4, S=0.01), the
reduction is of a factor 3000 (from 436kb to 135byte) with a 6.8%
(85.1%->78.3%) absolute loss in accuracy. In practice it is
probably not worthwhile to compress this heavily, because long
before this point, the size of the profile codebook has become
insignificant in comparison to the “word-pair” section of the LM
(603kb).

10. ACKNOWLEDGEMENTS

This work has partially been funded by the European Union under
the integrated project TC-STAR - Technology and Corpora for
Speech-to-Speech ~ Translation - (IST-2002-FP6-506738,
http://www.tc-star.org).

11. REFERENCES

[1] R. Rosenfeld, “Two Decades of Statistical Language
Modelling: Where Do We Go from Here?”, Proc. of the IEEE Vol.
88(8), pp. 1270-1278, 2000

[2] S.M. Katz, “Estimation of Probabilities from Sparse Data for
the Language Model Component of a Speech Recognizer”, IEEE
Trans. on Acoustics, Speech and Signal Processing, Vol. 35(3), pp.
400-401, 1987

[3] F. Jelinek, “Self Organized Language Modeling for Speech
Recognition”, in Readings in Speech Recognition, Alex Waibel
and Kai-Fu Lee (Eds.), Morgan Kaufmann, 1989

[4] K. Seymore and Ronald Rosenfeld, “Scalable Backoff
Language Models”, Proc. of ICSLP, Vol. 1, pp. 232-235, 1996

[5] A. Stolcke, “Entropy-based Pruning of Backoff Language
Models”, Proc. of DARPA Broadcast News Transcription and
Understanding Workshop, pp. 270-274, 1998

[6] E. Whittaker, B. Raj, “Quantization-based Language Model
Compression”, Proc. Eurospeech, pp. 33-36, 2001

[7] P. Witschel et al., “POS-based Language Models for Lange
Vocabulary Speech Recognition on Embedded Systems”, Proc. of
Interspeech2005, pp. 1333-1336

[8] P.F. Brown, V.J. DellaPietra, P.V. deSouza, J.C. Lai, R.L
Mercer, “Class-based n-gram Models of Natural Language”,
Computational Linguistics, Vol 18, pp. 467-479, 1990

[9] R. Kneser and H. Ney, "Improved Clustering Techniques for
Class-Based Statistical Language Modelling", Proceedings of the
European Conference on Speech Communication and Technology,
pp. 973-976, 1993.

[10] A. Gruenstein, C. Wang and S. Seneff, "Context-Sensitive
Statistical Language Modeling", Proceedings of Interspeech 2005 -
Eurospeech, pp. 17-20, 2005.

I-1044

