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ABSTRACT

This paper presents a method to extract tone relevant

features based on pitch flux from continuous speech signal. 

The autocorrelations of two adjacent frames are calculated 

and the covariance between them is estimated to extract 

multi-dimensional pitch flux features. These features,

together with MFCCs, are modeled in a 2-stream GMM

models, and are tested in a 3-dialect identification task for

Chinese. The pitch flux features have shown to be very

effective in identifying tonal languages with short speech 

segments. For the test speech segments of 3 seconds, 2-

stream model achieves more than 30% error reduction over 

MFCC-based model.

1. INTRODUCTION 

Language identification is a process of determining the

language identity of a given spoken query. It is an important

technology in many speech processing applications. Besides 

the information from phonetics and phonotactics, pitch

relevant features are also an important factor to discriminate

the languages, especially the tonal languages. The pitch

relevant features have been successfully used in speaker 

recognition [1,2], language recognition [3,4], and speech 

recognition of tonal language [5,6].

Dialect identification is a special case of language

identification task. It is more difficult than the general

language identification because dialects are highly 

confusable and with highly overlapping phonetic systems.

In this paper, we study Chinese dialect identification [7,8]

on the three Chinese dialects, Mandarin, Cantonese and 

Shanghainese, using Gaussian mixture models (GMM). The 

main focus here is the effect of pitch relevant information

on the Chinese dialect identification task.

Chinese dialects not only share a common written script

and vocabulary, but also use similar phonetic systems.

However, they are all tonal languages with different

numbers of intonations, and the patterns of their intonations

are very different. Human perception experience also tells

that the prosodic information is very important to tell one

dialect from another. We believe that features extracted 

from pitch information provide discriminative ability among

Chinese dialects. 

Instead of calculating F0 features explicitly, we extract

frame-based multi-dimensional pitch flux features in

continuous speech signal. There is no need for the direct 

pitch detection and no need for voiced/unvoiced decision. It

is straightforward to use these multi-dimensional feature

vectors in a general speech recognition task of tonal 

languages, but in this paper we only study its contribution in

Chinese dialect identification. 

In section 2, we will introduce the motivation of pitch 

flux and describe the proposed feature extraction algorithm

in detail. In section 3, we will show the experimental results

on identification of three Chinese dialects and give the

discussion in section 4. 

2. FEATURE EXTRACTION

2.1. Pitch Flux Features 

Assume that a frame of voiced speech signal is modeled as

the summation of harmonics
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where N is the number of samples in the frame, I is the

number of harmonics, i , i and i are the amplitude,

frequency and phase of the ith harmonics respectively. 

The autocorrelation of ( )x n is
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For a frame at time t, covariance of autocorrelation with 

its adjacent frame can be derived as the pitch flux features 
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where ( ) { ( )}t tE R and is the index in the

feature vector. The frame shift is usually between 10ms to

20ms. During this short interval, the extent of spectral and

pitch flux are subject to the constraint of human’s vocal

movement. So Eq. (3) can further become

( / 2, / 2]d N N
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where , 1, ,, { 1,..., }i t i t i i i I .

Differentiating with respect to i , we get 

2 2
, 1, 1,

( , )
sin( )t

t i t i i t i
i

c d
d .           (5) 

Since i ’s are small values between two adjacent 

frames, Eq. (5) can be approximated as 
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In the case of , Eq. (6) can even become as simple

as follows

0d

( , )t
i

i

c d
.       (7) 

It shows explicitly the relationship between the dynamics of

pitch contour and pitch flux feature curve at 0d . If pitch 

frequency increases, i.e. 0i , the feature curve shows a 

positive slope, while if the pitch frequency decreases, the

slope is negative.

In Eq. (4), we can also see that pitch flux features, at 

, are the function of 0d 1,t i . Since they do not depend 

upon the fundamental frequency only, but also depend on 

the other harmonics as well, we expect that it can work well

for telephony speech where lower part of the spectra is 

normally cut severely due to the distorted bandwidth of

telephony channel. The pitch flux feature extraction

algorithm is as follows.

Given speech data of two adjacent frames

1( ), ( ), 0,..., 1t tx n x n n N ,

the process of pitch flux feature extraction consists of the

following steps: 

Step 1: Calculate power density spectrum

.       (8) 2( ) | { ( )} | , 0,..., 1t tP k DFT x n k K

Step 2: Make low frequency emphasis by passing through

a low-pass filter

( ) ( ) ( )t tP k P k W k ,       (9) 

 with

,( ) 1 cos(2 / )W k k K

so that the dominant harmonics can be enhanced. 

Step 3: Normalize the power density spectrum
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Step 4: Calculate autocorrelation by applying inverse DFT 

Figure 1a Pitch flux  features for decreasing tone speech

Figure 1b Pitch flux  features for increasing tone speech

1( ) { ( )}t tR k DFT P k .     (11) 

Step 5: Finally define the pitch flux features as follows

1
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where D d D is the index in the feature vector, and the

dimension of the feature vector is (2D+1); C is a constant to

normalize the range of the features, chosen as 10 .8

2.2. Examples

The features introduced in section 2.1 have a clear physical

meaning of pitch flux in the speech. Figure 1a and Figure 1b

give examples of the feature curves for typical types of 

voiced speech signals in Mandarin.

Figure 1a shows the 11-dimension features (bottom

graph) for the case of decreasing tone speech in Mandarin. 

D in Eq. (12) is set to 5 and the feature indexes in the graph

correspond with d from -5 to 5. The graph at top left corner 

shows the speech signal of previous frame, and the graph 

under it shows the speech signal of current frame. The right

two graphs show the autocorrelations of the corresponding

speech signal on the left side. It can be seen that because the 

period of the speech signal increases (while pitch 

decreasing), the covariance of the autocorrelations increase 
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when the current frame is shifted to left and decrease when 

the current frame is shifted to right. Figure 1b shows a

typical pattern of pitch flux features for the speech with 

increasing tone in Mandarin.

3. CHINESE DIALECT IDENTIFICATION 

We evaluate the effect of the above-mentioned pitch flux

features on the identification task of three Chinese dialects,

Mandarin, Cantonese and Shanghainese. Chinese dialects

are tonal languages and it is generally agreed that there are 5

lexical tones in Mandarin, 9 lexical tones in Cantonese and

5 lexical tones in Shanghainese. These dialects have

different patterns of intonations and provide us additional

information to discriminate from each other. Our Chinese 

dialect identification task is designed to make the

identification on the three dialects by using GMM modeling

with the fusion of pitch flux features and MFCC features.

Different durations of testing segments and different

amounts of training data for GMM modeling are used to

inspect the efficiency of pitch flux features.

3.1. Feature Fusion

For each speech frame, we extract two streams of feature

vectors. The first stream is a 39-dimensional feature vector

that consists of 12 MFCCs and normalized energy, plus

their first and second order derivatives. Sentence-based

cepstral mean subtraction is applied to acoustic

normalization both in the training and testing. The second

stream is an 11-dimension pitch flux feature vector obtained

by setting in Eq. (12). Each of the two streams is

modeled with a GMM model separately. The total

likelihood score is obtained by the fusion of two feature

streams.

5D

Let MFCC and PFlux be GMM models for MFCC feature

stream and pitch flux feature stream respectively, the fused 

log likelihood score of a speech segment :{ },1tX x t T  is 

calculated by 

[ log( ( )) (1 )log( ( ))]
MFCC PFluxtt

l w p x w p x
t

1

   (13) 

where 0 is the weighting factor for the two feature 

streams and can be estimated from development speech data 

which are different from training data.

w

3.2. Experiment Setup 

The speech data of Mandarin, Cantonese and Shanghainese 

are collected from telephone line. There are about 10 hours 

of speech data in each of the three dialects as the training 

data. In order to have a clear picture on the relationship

between the amount of training data and identification

accuracy, the GMM models are trained with different 

amount of training data, 1, 2, 4, 6, 8, and 10 hours. For the

evaluation, 1000 speech segments for each of the four

durations, 3, 6, 9, 15 seconds respectively are used as test

data. For each of the four durations, additional development

data of 100 speech segments in each dialect are used to 

estimate the weighting factor w. There is no speaker overlap 

among the training, development and testing data.

3.3. Experiment Results 

GMM modeling with MFCC features for the language

identification has been well studied and has been proven to

be efficient. Although pitch flux features do not contain as 

much discriminant information as MFCCs do, they still can

provide useful information for the language recognition

task, especially for Chinese dialects. In the experiments of 

this paper, we are interested in how much the proposed

features can help at the basis of MFCC features. First we 

run the experiments on MFCC feature stream and pitch flux

feature stream separately to see their individual performance

on this dialect identification task. The followed experiments

with fusion of the two feature streams will provide us the

sufficient knowledge about the efficiency of the pitch flux

features at the basis of MFCC features. Figures 2a-2d in the

next page show the details. In each the figures, six accuracy

curves indicate the different amount of training data.

Figure 2a shows the identification accuracy of three 

Chinese dialects with GMM modeling on MFCC features 

only. It shows clearly the relationship between the accuracy 

and amount of training data, and the relationship between

the accuracy and durations of test speech segments. Along 

the increase of test speech segment durations from 3

seconds to 15 seconds, the accuracy increases almost

linearly. More training data can also bring a better accuracy

on the identification.

Figure 2b shows the identification accuracy of three 

Chinese dialects by using pitch flux features only. These 

tone relevant features provide discriminat information on

the three dialect recognition even with a short speech 

segment of 3 seconds, but the accuraciy is low compared

with the accuracy on MFCCs. It also shows that there is no 

big gain with more training data and longer test speech 

segments. We can only use such features as useful auxiliary

information to help MFFC features to achieve a better

performance.

Figure 2c shows the results of adding the pitch flux

feature stream at the basis of MFCC stream, and Figure 2d 

shows relative error reduction, compared with those using

MFCC feature stream only. More than 30% error reduction

can be obtained for the 3-second test segments with 8 or 10 

hours training data. The pitch flux features indeed help a lot

on the Chinese dialect identification when the test speech

segments are short. When longer testing speech segments

are available, the benefit from MFCCs becomes the

dominant factor and the gain from pitch flux features is

quite limited.

I  1031



60

65

70

75

80

85

90

95

3S 6S 9S 15S

Durations of Test Segments

Id
e
n

ti
fi

c
a
ti

o
n

 R
a
te

 (
%

) 1H

2H

4H

6H

8H

10H

Figure 2a Dialect Identification Rate (%)

with MFCC Features Only

Figure 2b Dialect Identification Rate (%)

with Pitch Flux Features Only

Figure 2c Dialect Identification Rate (%)

with both MFCC and Pitch Flux Features

Figure 2d Dialect Identification Error Reduction (%)

 by Adding Pitch Flux Features at the basis of MFCC Features

4. DISCUSSION 

Chinese are tone rich language with multiple

intonations. The intonations are important information for 

people to understand the spoken Chinese. Different Chinese

dialects have different numbers of intonations and different

patterns of intonations. Better performance on Chinese

dialect identification can be achieved by making good use 

of such kind of discrimination information.

Instead of calculating F0 features explicitly, we extract

frame-based multi-dimensional tone relevant features based

on the pitch flux in continuous speech signal. Covariance 

coefficients between the autocorrelations of two adjacent

frames are estimated to serve as such features. 

These pitch flux features are applied as a separated

feature stream to provide additional discriminative

information at the basis of MFCC feature stream. Each of 

two streams is modeled by GMM models of 512 Gaussian

mixtures. By fusing the pitch flux feature stream with the

MFCC stream, the error rate is reduced by more than 30%,

compared with those using MFCC feature stream only,

when the test speech segments are as short as 3 seconds. It

also shows that the improvement by using pitch flux

features will be limited when the test speech segments are 

long enough. 
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