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ABSTRACT
In this paper, we reformulate an adaptation scheme of Coarse/Fine
Training (CFT) of transfer vectors in acoustic modeling by using
directional statistics. In CFT, the transfer vector is decomposed
into a unit direction vector and a scaling factor. By using coarse
tied Gaussian class (coarse class) estimation for the unit direction
vector, and by using fine tied Gaussian class (fine class) estima-
tion for the scaling factor, we can obtain accurate transfer vectors
with a small number of free parameters. Directional statistics is
a method for analyzing geometric parameters (e.g. angle and unit
vector) using directional data, and is suited for the analysis of the
CFT representation. Using directional statistics as a basis, we con-
struct expectation-maximization algorithms for CFT parameters an-
alytically using the maximum likelihood and Bayesian (maximum
a posteriori) approaches. In particular, with the Bayesian approach,
prior and posterior distributions for unit direction vectors are rep-
resented with a von Mises distribution, a representative distribution
in directional statistics. Speaker adaptation experiments show that
our proposal improves the performance of large vocabulary continu-
ous speech recognition due to the efficient coarse/fine representation
of transfer vectors, compared with the conventional transfer vector
adaptation.

1. INTRODUCTION

Speaker adaptation techniques are aimed at improving speech recog-
nition performance solely by using a small amount of adaptation
data. Under such conditions, common Maximum Likelihood (ML)
approaches often have a detrimental effect on performance due to
over-training, and conventional adaptation techniques possess mech-
anisms for suppressing such over-training. Transformative adapta-
tion approaches, as typified by the Maximum Likelihood Linear Re-
gression (MLLR) adaptation, do not estimate the target model di-
rectly, but estimate mapping or transformation from initial to target
models [1–5]. Model parameters are usually grouped into classes in
advance, and we estimate a set of transformation parameters for each
class, so that a reasonable amount of data is available for estimating
each transformation. Bayesian adaptation approaches, as typified
by the Maximum A Posteriori (MAP) adaptation, directly estimate
individual parameters in the target model, taking into account both
data and prior distributions [6]. When there is a shortage of data for
a model parameter, the prior distribution becomes dominant in the
estimation and prevents the parameter from being estimated solely
relying on the data. An advantage of transformative adaptation over
Bayesian adaptation is the quick effect of adaptation for a small
amount of data. This is because there are fewer free parameters to be
estimated, due to the use of parameter classes where model parame-
ters in the same class are commonly transformed. On the other hand,
an advantage of Bayesian adaptation over transformative adapta-
tion is its asymptotic property, where the performance of an adapted
model comes close to that of a speaker-dependent model when a

large amount of data is available. This is because the Bayesian adap-
tation estimates model parameters individually instead of using pa-
rameter classes, and theoretically this becomes equivalent to ML es-
timation for an infinite amount of data. Thus, we can also view the
differences between adaptation approaches in terms of the resolution
of model parameter classes estimated directly or indirectly through
adaptation. In the above description, the transformative adaptation is
based on a coarse resolution class (coarse class), while the Bayesian
adaptation is based on individual parameters, which offer extremely
fine resolution (fine class). We recently proposed a new adaptation
technique Coarse/Fine Training (CFT), which optimally combines
both coarse and fine estimation to utilize their advantages for any
amount of data [7]. The CFT approach focuses on the transfer vec-
tor estimation of a Gaussian mean from an initial model to a target
model. The transfer vector is decomposed into a direction vector and
a scaling factor. By using coarse classes and fine classes to estimate
direction vectors and scaling factors, respectively, we are able to es-
timate accurate transfer vectors with a small number of free param-
eters. In this paper, we introduce a new formulation of CFT by im-
posing the geometrical constraint of the unit length on the direction
vector in the feature dimension space. This approach is inspired by
the statistical analysis of directional data, which is known as direc-
tional statistics [8]. Using directional statistics as a basis and by in-
troducing a von Mises distribution in particular, we can successfully
derive an analytical solution for the transfer vectors of ML and MAP
frameworks. Thus, our adaptation scheme provides a new paradigm
for acoustic modeling based on directional statistics. We also apply
a tree structure, which organizes hierarchical Gaussian classes [2],
in the CFT implementation, and represents the coarse/fine classes
efficiently. We demonstrate the effectiveness of our proposal in a
supervised speaker adaptation task in large vocabulary continuous
speech recognition experiments.

2. COARSE/FINE REPRESENTATION OF TRANSFER
VECTORS

In this section, we introduce a new coarse/fine representation of
transfer vectors for mean vector parameters in acoustic modeling.
With conventional transfer vector approaches, to reduce the number
of free parameters, transfer vector —new

k is shared by several Gaus-
sians as follows:

—new
k = —ini

k + ∆l(k), (1)

where —ini
k denotes a mean vector parameter of the initial data in

Gaussian k. ∆l(k) denotes a transfer vector where class l(k) is a set
of Gaussians including Gaussian k [1, 2].

In the coarse/fine representation, we estimate ∆i(k) and scaling
factor gj(k) using different classes i(k) and j(k) from Gaussian class
k [7], as follows:

—new
k = —ini

k + gj(k)∆i(k), (2)
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Fig. 1. Hierarchical inclusion relation between unit direction vector
‹i(j), scaling factor gj(k), and Gaussian k.

Fig. 2. Behavior of transfer vectors represented by ‹i(j) and gj(k) in
a variance-normalized feature dimension space.

where classes i(k) and j(k) are different sets of Gaussians that both
include Gaussian k. That is to say, the direction vector and the scal-
ing factor are tied across distinct sets of Gaussians. There is only
one parameter for the scaling factor gj(k), and it is much smaller than
that for the direction vector ∆i(k), which is the same as the number
of feature dimensions. This means that the estimation of the scaling
factor gj(k) requires a much smaller amount of data than the esti-
mation of the direction vector ∆i(k). Therefore, we can estimate the
transfer vector for Gaussians even with a small amount of adaptation
data by (i) estimating the direction vector from the large fraction of
adaptation data assigned to coarse tied Gaussians (coarse class esti-
mation), and (ii) estimating the scaling factor from the small fraction
of adaptation data assigned to fine tied Gaussians (fine class estima-
tion).

In this paper, we further impose three constraints in Eq. (2)
based on directional statistics. Namely, we adopt unit vectors for
directional vectors and leave the magnitude estimation of transfer
vectors to scaling factors. Then, the unit direction vector has the con-
straint that |‹i| = 1. Moreover, we adopt a hierarchical inclusion re-
lation whereby coarse class i is a set of fine class j, and fine class j is
a set of individual Gaussian class k, i.e., k ∈ j(k) ∈ i(j), as shown
in Figure 1. We also adopt a representation of variance-normalized
transfer vectors instead of a direct representation of transfer vectors.
These simplify the derivation of the EM algorithm in the next sec-
tion. Using the unit vector constraint, the hierarchical inclusion rela-
tion and the variance-normalized representation as a basis, we obtain
a new coarse/fine representation as follows:

—new
k = —ini

k + gj(k)Σ
ini
k ‹i(j), (3)

where Σini
k denotes a covariance matrix parameter of the initial data

in Gaussian k. We call this “directional coarse/fine representation”,
which efficiently represents the transfer vectors of mean parameters
in a variance-normalized feature dimension space, as shown in Fig-
ure 2. In the directional coarse/fine representation, unit direction
vectors and scaling factors are statistically estimated based on direc-
tional statistics.

3. ANALYTIC SOLUTIONS OF CFT BASED ON
DIRECTIONAL STATISTICS

In this section we discuss the analytic solutions we obtain when esti-
mating coarse/fine parameters ‹i(j) and gj(k). To avoid complicated

indexes, we simplify indexes i(j) and j(k) to i and j in this sec-
tion. The auxiliary function (known as the Q function) in the EM al-
gorithm is obtained by calculating the expectation of complete data
likelihood with respect to a posterior distribution for latent variables:X

k,t

ζt
k logN (ot|—new

k , Σini
k ), (4)

where k denotes all Gaussian indexes over all HMM states in all
phoneme categories, ζt

k denotes the occupancy count of frame t as-
signed to Gaussian k, and N (ot|—new

k , Σini
k ) denotes the Gaussian

for feature vector ot of frame t. In Eq. (4), we omit HMM state
transition and mixture weight factors because we only discuss the
estimation of —new

k . By substituting the mean vector representa-
tion (Eq. (3)) into Eq. (4), we can obtain the concrete form of
Eq. (4). Although, in general, it is difficult to calculate the sum-
mation of variables in tied Gaussian classes i and j with respect to
Gaussian k, by utilizing the hierarchical inclusion relation and the
variance-normalized representation, we can derive the simple form
of the auxiliary function as:X

k,t

ζt
k logN (ot|—ini

k + gjΣ
ini
k ‹i, Σ

ini
k )

∝ −1

2

X
i

X
j∈i

ζj(gj)
2 +

X
i

 
‹i ·

X
j∈i

gjζjjj

!
,

(5)

where (a ·b) denotes the inner product of vectors a and b, and j ∈ i
denotes the summation with respect to fine class j included in coarse
class i. We omit terms that do not depend on ‹i and gj . In addition to
coarse/fine parameters gj and ‹i, Eq. (5) is expressed by two other
statistics ζj and jj , defined as:

ζj ≡
X
k∈j

ζk

jj ≡ 1

ζj

X
k∈j

(Σini
k )−1ζk

“b—k − —ini
k

”
.

(6)

where ζj is the sum of the occupancy counts over a set of Gaus-
sians k in fine class j. b—k is an ML estimate of mean parameter —k,
i.e., b—k =

P
t ζt

kot/ζk in HMMs. jj is the occupancy weighted
average of variance-normalized transfer vectors in Gaussians k in-
cluded in fine class j．Therefore, jj substantially corresponds to
a variance-normalized transfer vector in fine class j, and we call
it the “averaged transfer vector”. These two statistics are sufficient
statistics for estimating gj and ‹i in directional statistics, and we can
obtain these statistics after the E-step in the EM algorithm, similar to
the case of usual mean parameter estimation in HMMs. The E-step
can be performed by substituting gj and ‹i estimated in the M-step
into the output distributions. Therefore, in the next section, we intro-
duce M-step solutions for CFT parameters using ML and Bayesian
approaches.

3.1. ML solution (CFT-ML) for M-step

The ML solution is obtained by differentiating the auxiliary function
from Eq. (5) with respect to ‹i and gj under the constraint that
|‹i| = 1, as follows:

‹ML
i =

P
j∈i gML

j ζjjj˛̨̨P
j∈i gML

j ζjjj

˛̨̨ . (7)

gML
j =

“
‹ML

i · jj

”
. (8)
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Equation (7) shows that the estimated unit direction vector retains
the constraint, which guarantees stable training so firmly that the
directional coarse/fine representation is retained even after the EM
step. Equation (8) shows that gML

j corresponds to the magnitude
when averaged transfer vector jj is projected onto unit direction
vector ‹ML

i . Note that if we use individual Gaussian classes for i
and j (i.e. i → k and j → k), mean vectors obtained by ‹ML

k and
gML

k are equivalent to ML estimate (b—k) in HMMs.

3.2. Bayesian solution (CFT-MAP) for M-step

We introduce the exact posterior distribution needed to obtain the
MAP estimates of the CFT parameters. With the Bayesian approach,
the key is to set appropriate prior distributions where their proba-
bilistic variables satisfy the parameter constraint. We set Gaussian
N (gj |u0

j , (v
0
j )−1/2) for a prior distribution of gj , which is a no-

constraint continuous value, where u0
j and v0

j are prior parameters.
‹i has the constraint that |‹i| = 1, and we set von Mises distribution
M(‹i|�0

i , κ
0
i ) for a prior distribution of ‹i, where �0

i and κ0
i are

prior parameters. The von Mises distribution is widely used in di-
rectional statistics to represent the probabilistic distribution of a unit
direction vector [8]. The von Mises and Gaussian distributions be-
long to the exponential family, and the posterior distributions can be
analytically solved as having the same function distribution as the
prior distributions. Therefore, MAP estimates are obtained by ex-
tracting the maximum probabilistic values for the obtained posterior
distributions. The analytical solution is as follows:

‹MAP
i =

κ0
i �0

i +
P

j∈i gMAP
j ζjjj˛̨̨

κ0
i �0

i +
P

j∈i gMAP
j ζjjj

˛̨̨ . (9)

gMAP
j =

u0
jv

0
j + ζj

`
‹MAP

i · jj

´
v0

j + ζj
. (10)

These appear very similar to the general MAP solutions (ex. [6]),
which interpolate uncertain ML estimates for small amounts of data
by using prior parameters. That is to say, when ζj becomes small,
MAP estimates ‹MAP

i and gMAP
j approach prior parameters �0

i and
u0

j , respectively. Therefore, if we set �0
i and u0

j from the parameters
obtained by using a sufficient amount of data, �0

i and u0
j mitigate the

uncertain estimation effect caused by small amounts of data. Con-
versely, when ζj becomes large, MAP estimates ‹MAP

i and gMAP
j

approach ML estimates ‹ML
i and gML

j , respectively, which guar-
antees the appropriate estimation for large amounts of data. These
limits for large and small amounts of data show the validity of the
MAP solution.

4. IMPLEMENTATION USING TREE STRUCTURE

In CFT, the most important issue is how to appropriately provide a
tied Gaussian structure for the coarse and fine classes according to
the amount of data. In this paper we adopt a tree structure, which
organizes hierarchical Gaussian classes [2], in the CFT implemen-
tation, and represents the coarse/fine classes efficiently. In [2], they
construct a binary tree, whose nodes hold several Gaussians from
an initial acoustic model in advance. Then, from the adaptation
data, they obtain an occupancy count of a node as the sum of the
all occupancy counts assigned to Gaussians in the node by using
the Viterbi algorithm. By pruning the child nodes if their occupan-
cies are less than a manually set occupancy threshold, they obtain a
set of leaf nodes, and regard them as classes of transfer vectors in
Eq. (1). Thus, they realize the transfer vector adaptation called Au-
tonomous Model Complexity Control (AMCC), which is effective
for any amount of adaptation data.

Table 1. Experimental conditions for speaker adaptation
Sampling rate/quantization 16 kHz / 16 bit
Feature vector 12 order MFCC with energy
(39 dimensions) +∆+∆∆
Window Hamming
Frame size/shift 25/10 ms

Num. of states 3 (Left to right)
Num. of phoneme categories 43
Num. of context-dependent HMM states 1,000
Num. of mixture components 16

Initial training data read sentences, 10.2 hours (44 males) †
Adaptation data 1st-half lectures, 320 utterances (10 males) ‡
Test data 2nd-half lectures, 13,162 words (10 males) ‡

Language model Standard trigram (made by CSJ transcription)
Vocabulary size 30, 000
Perplexity 82.2
OOV rate 2.1 %

† ASJ (Acoustical Society of Japan) database
‡ CSJ (Corpus of Spontaneous Japanese) database

We also use occupancy thresholds to obtain coarse and fine classes
in that tree structure. A scaling factor in a fine class has only one free
parameter, and is well estimated even when the amount of adaptation
data is smaller than that of a direction vector in a coarse class. There-
fore, we set a smaller occupancy threshold for the fine class, and a
larger occupancy threshold for the coarse class. In this tree structure,
it is certain that small occupancy nodes are included in large occu-
pancy nodes. Therefore, we can satisfy the hierarchical inclusion
relation for the coarse, fine, and individual Gaussian classes based
on this tree structure representation.

5. SUPERVISED SPEAKER ADAPTATION EXPERIMENT

We conducted experiments to show the effectiveness of the CFT
adaptation within the transfer vector adaptation scheme. We com-
pared CFT-ML and the conventional transfer vector adaptation de-
scribed in Eq. (1) (AMCC) [2] in terms of the improvement in adap-
tation accuracy to show the effectiveness of the directional coarse/fine
representation. We also compared CFT-ML and CFT-MAP to show
the effectiveness of the CFT Bayesian solution. Table 1 summarizes
the experimental conditions. The initial (prior) acoustic model was
constructed from read sentences and we adapted this model using 10
lectures spoken by 10 males with their transcriptions. In this task,
the mismatch between the training and adaptation data is caused not
only by the speakers, but also by the difference in speaking styles
between read speech and a lecture. Then, the Gaussian tree struc-
ture described in Section 4 was constructed from the initial acoustic
model. The total number of leaf nodes in the tree was 16,000. By
setting the occupancy thresholds (=10, 30, and 50) with reference
to the result reported in [2], we obtained tied Gaussian classes for
each fraction of the adaptation data, and used them as coarse classes
in CFT, and as transfer vector classes in AMCC. For fine classes in
CFT, we always used occupancy threshold = 1 because we found
that this value was not very sensitive to the recognition performance
in the preliminary investigation. As regards the adaptation and test
data, each lecture was divided in half based on the utterance units,
and the first half of the lecture (320 utterances) was used as adapta-
tion data and the second half (13,162 words) was used as recognition
data. The total amount of adaptation data consisted of more than 32
utterances for each male, and 1, 2, 4, 8, 16, and 32 utterances were
used as adaptation data. As a result, 6 sets of adapted acoustic mod-
els for several amounts of adaptation data were prepared for each
male.

Figures 3 through 5 compare word error rates obtained by CFT-
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Fig. 3. Comparison of CFT-MAP, CFT-ML, and AMCC (occupancy
threshold = 10).

�����������	
��	�������

��

��

��

��

��

��

��

��

��

��

��

�������� ��������� ��������� ��������� ���������� ����������

��� �
�!��������"������
��������
�����

�
�
��
��
��
�
��
��
��
��
	



#$%&'()

#$%&'*

('##

'()&'+(�

���������"�������,�

Fig. 4. Comparison of CFT-MAP, CFT-ML, and AMCC (occupancy
threshold = 30).

MAP, CFT-ML, and AMCC for each occupancy threshold (10, 30,
and 50). We also add the word error rates of the conventional MAP
adaptation, which estimates only the mean parameters of individual
Gaussians (MAP-MEAN) [6]. The average number of coarse classes
(or AMCC classes) per male increased as the amount of adaptation
data increased, and the performance of CFT-MAP, CFT-ML, and
AMCC was almost always better than MAP-MEAN for any amount
of data, which shows the effectiveness of the autonomous model
complexity control, described in Section 4. For a large amount of
data (more than 16 utterances) CFT-ML was always better than AMCC
by up to 1.0 %. This is because CFT-ML has more free parameters
than AMCC by the number of scaling factors, which provides an ap-
propriate resolution of the parameter representation. This shows the
effectiveness of the directional coarse/fine representation especially
for large amounts of adaptation data. Next, we compared CFT-MAP
with CFT-ML and AMCC, where prior parameters �0 and u0 were
set respectively by a unit direction vector and a scaling factor in the
root node, which is the coarsest class in the tree structure. The other
prior parameters were set at κ0 = 100 and v0 = 1.0. For a small
amount of data (fewer than 2 utterances), CFT-MAP was superior
to CFT-ML by up to 1.3 %, and to AMCC by up to 3.1 %. In such
cases, the performance of CFT-ML and AMCC deteriorated as the
occupancy threshold decreased where the amount of data per free pa-
rameter also decreased. This indicates that transfer vectors in AMCC
and unit direction vectors in CFT-ML might be estimated incorrectly
due to over-training. In CFT-MAP, such over-training effects were
mitigated by the root node parameters based on a sufficient amount
of data, which leads to the superiority of CFT-MAP. However, for the
large amount of data, the performance of CFT-MAP was worse than
that of CFT-ML, due to the effect of the root node parameters be-
ing estimated using too coarse a class. Therefore, we must consider
an appropriate prior setting for CFT-MAP that includes the advan-
tage of the directional coarse/fine representation even when there are
large amounts of data.
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Fig. 5. Comparison of CFT-MAP, CFT-ML, and AMCC (occupancy
threshold = 50).

6. SUMMARY

In this paper we introduced a new representation of the transfer vec-
tors in acoustic model adaptation by using the Coarse/Fine Training
of transfer vectors (CFT) based on directional statistics. Our adap-
tation scheme provides a new paradigm for acoustic modeling based
on directional statistics. We showed the effectiveness of CFT in
speaker adaptation experiments for large amounts of adaptation data,
and of the Bayesian CFT (CFT-MAP) based on the von Mises distri-
bution for small amounts of adaptation data. However, we found that
the setting of prior parameters should be improved in CFT-MAP, and
we will incorporate the structural MAP approach [9] for this purpose
in the future. We will also try to apply CFT to MLLR [5], because
the CFT representation can be applied to other transformative ap-
proaches in addition to the transfer vector approach presented in this
paper.
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