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ABSTRACT
In real-time speech recognition applications, there is a need to
implement a fast and reliable adaptation algorithm. We pro-
pose a method to reduce adaptation time of the unsupervised
speaker adaptation based on HMM-Sufficient Statistics. We
use only a single arbitrary utterance without transcriptions in
selecting the N-best speakers’ Sufficient Statistics created of-
fline to provide data for adaptation to a target speaker. Further
reduction of N-best implies a reduction in adaptation time.
However, it degrades recognition performance due to insuf-
ficiency of data needed to robustly adapt the model. Linear
interpolation of the global HMM-Sufficient Statistics offsets
this negative effect and achieves a 50% reduction in adapta-
tion time without compromising the recognition performance.
We have reduced the adaptation time from 10 sec to 5 sec
without degradation of the word accuracy. Furthermore, we
compared our method with Vocal Tract Length Normaliza-
tion (VTLN), Maximum A Posteriori (MAP) and Maximum
Likelihood Linear Regression (MLLR). Moreover, we tested
in office, car, crowd and booth noise environments in 10 dB,
15 dB, 20 dB and 25 dB SNRs.

1. INTRODUCTION

Automatic Speech Recognition system has a very important
role in human-machine interface. For the system to be practi-
cal, it should be usable to wide variety of speakers. Mismatch
due to different age-groups and genders results in speaker
variability problem which degrades the performance of the
recognizer [1]. There are several methods in addressing this
problem. For instance, training multiple classes of acoustic
models with smaller variance [2]. Normalization of the vocal
tract such as VTLN [3] has also been proposed. Model adap-
tation such as MLLR [4] and MAP [5] for example is proven
to be very effective. Another method, is the transformation
and combination of HMMs [6]. To achieve a good recog-
nition performance, sufficient amounts of adaptation data in
several utterances with phoneme transcriptions are needed in
the case of MLLR and MAP [7], which raises the issues like
execution time and size of adaptation data.

We have previously proposed a rapid unsupervised speaker
adaptation based on HMM-Sufficient Statistics requiring only

one adaptation utterance with a 10 sec adaptation time [7]
[8]. Relevant and promising work in rapid adaptation includes
the linear combination of rank-one matrices, which can han-
dle very short adaptation data [9]. Also, a very fast com-
pact context-dependent eigenvoice model adaptation is said
to work even with minimal amount of data [10].

In this paper we extended the conventional unsupervised
HMM Sufficient Statistics speaker adaptation using linear in-
terpolation to further reduce the adaptation time. The pro-
posed method can adapt in 5 sec time, which is 50% faster
than the conventional method.

This paper is organized as follows. In section 2, HMM-
Sufficient Statistics adaptation is introduced. Section 3 dis-
cusses the proposed method, then experimental results are
presented in section 4 comparing different adaptation tech-
niques. Finally, we conclude this paper in section 5.

2. HMM-SUFFICIENT STATISTICS ADAPTATION

Sufficient Statistics summarizes all the information in a sam-
ple about a target parameter which allows for an observa-
tion (training data) which is huge in size to be compactly
represented in low-dimensional parameters. The concept of
the unsupervised HMM-Sufficient Statistics speaker adapta-
tion is summarized in two steps. First, we estimate the in-
dividual Sufficient Statistics of each speaker in the training
database (offline). Next step is to make use of these Sufficient
Statistics to provide data for adaptation to a target speaker
through N-best speaker selection. Since estimation of Suffi-
cient Statistics can be done offline, adaptation will not require
any model estimation. Only updating of the model parame-
ters using the Sufficient Statistics is needed. This renders the
proposed method to execute very fast.

Figure 1 is a block diagram of the conventional HMM-
Sufficient Statistics adaptation. First, the Speaker-Independent
(SI) model is trained regardless of classes using all of the
training data from the JNAS adult database consisting of 60K-
utterance from 301 male and female speakers and the JNAS
Senior database with 53K-utterance from 260 male and fe-
male speakers [1], where each speaker contributes 200 utter-
ances. From this SI model, multi-template HMM models are
created namely: Adult male, Adult female, Senior male and
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Fig. 1. Conventional HMM-Sufficient Statistics adaptation.
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Fig. 2. Proposed HMM-Sufficient Statistics adaptation with linear
interpolation.

Senior female. Consequently, four sets of HMM-Sufficient
Statistics for each speaker are created which are equivalent to
one-iteration of the Expectation Maximization (E-M) training
with four multi-template HMMs.

2.1. Limitations of the Conventional HMM-Sufficient Statistics
Adaptation

The recognition performance and adaptation speed of this ap-
proach are dependent on the number of N-best speakers, S.
Experiments showed that the optimal N-best is Soptimal = 40
which corresponds to a 10-second adaptation time [7] [11]
[8]. If S is further reduced such that S < Soptimal, adapta-
tion time is reduced with a trade-off of the recognition perfor-
mance. This is attributed to the fact that further decreasing S
would result to insufficient data necessary to robustly estimate
the target speaker’s HMMs.

3. PROPOSED HMM-SUFFICIENT STATISTICS
ADAPTATION WITH LINEAR INTERPOLATION

To address the problem discussed in section 2.1, we intro-
duced linear interpolation using the global Sufficient Statis-

tics. Figure 2 shows the proposed weighting of the global
Sufficient Statistics. The proposed method makes it possible
to robustly estimate the target speaker’s HMMs even with N-
best reduced (S < Soptimal) since the weighted global Suffi-
cient Statistics offsets the negative effect of the removed sta-
tistical information. The adapted HMM parameters are as fol-
lows :
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where C adpnew

im ,µadpnew

im , Σadpnew

im , aadpnew

ij are the newly
updated mixture weight, means, covariance matrix and up-
dated transition probability using linear interpolation. LS

im,
LS

i→j , mS
im, vS

im are the probability of mixture component
occupancy, the accumulated probability of the state occupancy,
means and variance respectively of the selected N-best speak-
ers S. Lglobal

im , Lglobal
i→j , mglobal

im , vglobal
im are the probability

of the mixture occupancy, the accumulated probability of the
state occupancy , means and variance respectively which are
estimated using all of the training data which constitute the
global Sufficient Statistics. ω is the weighting factor of the
global HMM-Sufficient Statistics. In this paper, we used the
following weighting factors :

ω = τ1, (5)

ω =
τ2

τ2 + Lglobal
i→j

, (6)

where in eqn (5) we used a multiplying constant τ1 and in eqn
(6), the weighting factor ω is normalized by the accumulated
probability of the state occupancy, Lglobal

i→j .

3.1. Speaker Selection

Speaker selection process starts with 1) the denoising of the
noisy test utterance using Spectral Subtraction (SS), then the
parameterization to MFCC. To reduce the effects of the resid-
ual noise that is present in the silence or unvoiced region of
the speech utterance, the low power parts are removed prior to
speaker selection. 2) We find the log-likelihood scores given
the arbitrary test utterance and the individual-speaker GMMs.
3) From the log-likelihood scores, only N-best speakers are
selected for adaptation. 4) From the N-best list, a class count
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Fig. 3. Recognition performance in 25 dB office noise environment

Table 1. Word accuracy in four different noisy environment condi-
tions (proposed/conventional).

Noise 10 dB 15 dB 20 dB 25dB
office 67.0/66.1 77.2/76.3 83.5/82.7 85.9/85.2
car 81.4/79.7 85.1/84.9 86.3/85.6 87.0/86.3

crowd 65.8/65.1 79.3/78.6 83.7/83.1 84.5/83.9
booth 44.6/44.0 69.1/68.4 82.8/82.1 83.4/82.8

is performed for the 4 different templates. Class counting is
carried out using the speaker labels in the form of speaker
IDs. Template model is selected based on this count. 5) Tem-
plate model, N-best HMM-Sufficient Statistics and the global
HMM-Sufficients Statistics are used for adaptation.

4. EXPERIMENTAL RESULTS

Phonetically tied mixture models (PTM) are trained by su-
perimposing 25 dB office noise to the database [11] in cre-
ating the multi-template models. In the acoustic modeling
part, office noise is superimposed to the clean speech from
the database that results to 25 dB SNR [11] which is used
in training. In the adaptation part, the single arbitrary noisy
utterance is denoised with SS which is used for speaker se-
lection as outlined in section 3.1. Lastly, for the actual recog-
nition test, the SS-denoised test utterances are superimposed
with 30 dB office noise prior to recognition to neutralize the
residual noise [11].

The test set is composed of four classes, namely: adult
male, adult female, senior male and senior female. Each class
is of 100 utterances from 23 speakers which are taken out-
side of the training speakers. This sums up to 400 total test
utterances from 92 test speakers across different genders and
age-groups. Recognition experiments are carried out using
JULIUS with 20K-word on Japanese newspaper dictation task
from JNAS.The language model is provided by the IPA dic-
tation toolkit.

Weighting factors given in equations (5) and (6) achieved
best results when 0 < τ1 < 0.2 and 1 ≤ τ2 ≤ 2. In particular
we used τ1 = 0.015 and τ2 = 2.

4.1. General Result

In Figure 3, the word accuracy when using no adaptation is
84.1% (A), while the conventional HMM-Sufficient Statistics
adaptation is 85.4% using N-best S = 40 (B). It is apparent
that when N-best is reduced to S = 25 (C), the word ac-
curacy drops to 85.2%. This points to the fact that merely
reducing the selected N-best in the conventional approach re-
sults to an insufficient statistical data needed to robustly es-
timate the target speaker’s HMMs as mentioned in section
2.1. The proposed HMM-Sufficient Statistics adaptation with
linear interpolation using the two different weighting factors
given in equations (5) and (6) has a recognition performance
of 85.9% (D) and 85.8% (E) respectively which is approx-
imately 0.7% higher than (C) when using the same amount
of N-best S = 25. It also outperforms the conventional ap-
proach even when using the optimal N-best Soptimal = 40.
It clearly shows that the negative effect in the estimation of
the HMMs caused by reducing N-best from Soptimal = 40
to S = 25 is compensated by the linear interpolation of the
global Sufficient Statistics. As a result, execution time be-
comes faster owing to fewer N-best. In Table 1, the summary
of recognition performance in office, crowd, car and booth
noise environments with different SNRs are given. In this ta-
ble the proposed method has an adaptation time of 6 sec.

4.2. Experiments with Clustering

We extended the proposed adaptation method by clustering
the speakers in the database as opposed to using only indi-
vidual speakers in Figure 2. In this scheme, the individual-
speaker GMMs and HMM-Sufficient Statistics are changed to
cluster-based. The N-best generates the list of clusters that are
close to the target speaker. The motivation of this appproach
is to further reduce adaptation time by reducing N-best. Al-
though, a further reduction of N-best poses a problem due to
the insufficient statistical data as dicussed in section 2.1, this
problem is minimized by combining 2 speakers statistical in-
formation in each cluster and at the same time incorporate
linear interpolation.

In order to keep the statistical information uniform in the
N-best list, we impose that each cluster be composed of a
uniform number of speakers (i.e 2 speakers per cluster) by
using Minimax [12]. We also implemented K-Means clus-
tering but the former has a better recognition performance.
Figure 4 is the plot of the word accuracy comparing 1) indi-
vidual speakers (unclustered) with interpolation, 2) clustered
speakers with and without linear interpolation as a function
of N-best. The N-best list for the unclustered speakers are the
individual speakers itself while the latters’ N-best list is com-
posed of clustered speakers. It is very clear that the proposed
linear interpolation improves the performance of the clustered
speakers as opposed to the clustered speakers without linear
interpolation. More interestingly, the clustered speakers with
linear interpolation using N-best =20 achieved a better recog-
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Table 2. Execution time of the proposed method using Intel XEON
2.4 GHz processor with 1GB of memory

HMM-Suff. Stat. adaptation Execution time
Conventional 10 sec

Linear interp. w/ individual speakers 6 sec
Linear interp. w/ clustered speakers 5 sec
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Fig. 4. Clustered speakers’ HMM-Sufficient Statistics adaptation
with linear interpolation (Averaged in all noisy environment condi-
tions and SNRs).

nition performance with that of using the individual speakers
(unclustered) with N-best = 25, thus a reduction in adapta-
tion time is further achieved. Table 2 is the summary of the
adaptation time.

4.3. Supervised MLLR, MAP, and VTLN Results

Figure 5 compares the proposed method against MLLR and
MAP. We also combined VTLN with MLLR (VTLN+MLLR)
and VTLN with MAP (VTLN+MAP) by warping both the
training and the testing data before performing MLLR using
128 classes and MAP respectively. In the abscissa, the labels
10 and 50 utterances correspond to the adaptation data for the
MLLR and MAP variants.

The proposed method works better than that of the super-
vised MLLR, MAP, VTLN+MLLR and VTLN+MAP when
using 10-utterance adaptation data. When using 50 utterances,
MLLR and VTLN+MLLR has a better performance than the
proposed method while MAP together and VTLN+MAP are
still outperformed by the proposed method. It should be noted
that when using 50-utterances of adaptation data, MLLR and
MAP are performed offline while the proposed method can
execute the adaptation process in 5 sec using only a single
arbitrary adaptation utterance without transcriptions.

5. CONCLUSION

We have succesfully reduced the adaptation time from 10 sec
to 6 sec with linear interpolation of the global HMM-Sufficient
Statistics. A further reduction to 5 sec is obtained by cluster-
ing the speakers’ HMM-Sufficient Statistics together with lin-
ear interpolation. Most interestingly, the reduction in N-best
which reduces adaptation time is achieved without degrading
the recognition performance. In fact, it slightly improved the
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Fig. 5. Recognition performance with various adaptation tech-
niques.

word accuracy. Furthermore, the system works well under
office, crowd, booth and car noise and in different SNRs.
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