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ABSTRACT

In this paper, we present a first exposition of an automatic closed 
captioning system designed to assist hearing impaired users in 
telemedicine. This system automatically separates telehealth 
conversation speech between a health care provider and a client 
into two streams and provides real-time captions of health care 
provider’s speech to client. The captioning system is based on the 
state-of-the-art technology of large vocabulary conversational 
speech recognition, encompassing speech stream separation, 
acoustic modeling, language modeling, real-time decoding, 
confidence annotation, and human-computer interface, with 
innovations made in several components. The system currently 
handles a vocabulary size over 46 K. Real-time captioning 
performance at the average word accuracy of 77.95% is reported.

1. INTRODUCTION 

Telemedicine or telehealth (videoconferencing for health care) has 
opened a world of specialty health services to persons who are 
otherwise unable to access appropriate care. Despite enormous 
public investment in telehealth systems, people who are deaf or 
hard of hearing encounter serious barriers to access current 
systems because of unsatisfactory audio quality, audio/video delay, 
and limited sign language and lip reading capabilities due to video 
distortion of motion scenes. Users with hearing loss in general rate 
captioned video materials valuable [1], and captioning is widely 
used in television broadcast programs [2]. If users with hearing 
loss are to benefit from telehealth, captioning system must be used. 
However, unlike captions used in television programs and 
educational tape materials that are generated by human expertise, 
it is unfeasible that a human expert be employed in each telehealth 
session to deliver closed captions, due to both factors of cost and 
availability.  Therefore, developing a voice-driven captioning 
system for telehealth by utilizing the state-of-the-art automatic 
speech recognition technology is of great significance to the access 
of telehealth by the deaf and hard of hearing users. 

Automatically transcribing broadcast news and lecture speech 
by using spoken language technology have been actively studied in 
recent years. DARPA Hub4’s leading efforts since 1990’s played a 
major role in launching large vocabulary continuous speech 
recognition (LVCSR) research in broadcast news in the United 
States [3]. Despite of wide variations in speaking styles, accents, 
and environmental conditions, LVCSR performance has been 
rapidly improved and achieved operational capability. Automatic 
broadcast news captioning was developed and put in use by NHK 
in Japan, where accuracy greater than 95% was achieved [4]. 
Recently, automatic transcription of lectures or presentations is
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drawing significant attentions in LVCSR [5]. Compared with 
broadcast news, lectures typically have a higher variation in 
speaking style, fluency, environmental conditions, and less 
constrained in syntax. Relatively little supervised training data also 
poses challenges in both acoustic and language modeling. Recent 
research in [5] showed an error rate of 32.4% on the Translation 
English Database (TED) task. 
     Automatic captioning for telemedicine bears similarities and 
differences from the above tasks. In the current system, focus is 
made on captioning health care provider’s speech alone due to two 
reasons. First, health care providers regularly use telehealth 
systems and therefore it is potentially feasible to collect individual 
provider’s speech to train accurate acoustic models. Second, the 
need for captioning is primarily on the clients’ side since there is 
generally a much higher percentage of clients with hearing loss 
than providers.  Since conversation in telehealth is carried out in 
alternating turns of provider and client, preprocessing is needed to 
extract provider’s speech stream out of the conversation for 
subsequent recognition.  Health care providers’ speech are 
spontaneous, have varying degrees of filled pauses, repetitions, 
repairs, etc. Each session of telehealth conversation may focus on 
one medical specialty problem or cover multiple specialties. To 
facilitate conversation understanding, it is important that the 
captions are delivered in real-time and with low latency. On the 
other hand, captioning word rate needs to be appropriate ( 150
words/minute) to avoid excessive amounts of captions that 
frustrate slow readers whose primary language is American Sign 
Language. Furthermore, it is important that medical terms be 
captioned correctly, and the system should provide necessary 
functions beyond automatic speech recognition for detection and 
correction of mistakes.  
     The captioning system as described in this paper has fulfilled 
most of the above described functions, while a few interface 
functions are currently under development. The system was trained 
by speech data collected in telehealth and five medical doctors 
have served as health care providers. An average captioning word 
accuracy of 77.95% has been achieved, with confidence annotation 
accuracy of 84.74%. The system achieved real-time captioning on 
TigerEngine v1.1, a one-pass speech decoding engine developed 
for the captioning system in the authors’ laboratory [6]. 
     This paper is organized into five sections. In Section 2, the 
procedure of data collection for the captioning task is explained. In 
Section 3, several key components of the captioning system are 
described, including speech stream separation, acoustic modeling, 
language modeling, real-time decoding, confidence annotation, 
and user interface. Experimental results are provided in Section 4, 
and a conclusion is made in Section 5. 
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2. TELEMEDICINE DATA COLLECTION 

The University of Missouri Telemedicine Network was used as the 
site for data collection.  Seven health care providers participated in 
the data collection. Recordings were made in sessions, with one 
session for one client, and each session lasted for about 20~30 
minutes. Conversation topics were primarily on neuropsychology, 
internal medicine, and dermatology. Health care providers’ speech 
data were automatically extracted from conversation speech and 
organized into records that were separated by pauses (see Section 
3.1).  There were about 51 hours of data extracted from the 
recordings, with about 24 hours of data from the seven health care 
providers. The speech data of health care providers were 
transcribed by experienced personnel, with a total of 305818 words 
and 8.02% words being medical terms. 
     In choosing microphone for speech recording, a tradeoff 
between recoding quality and unobtrusiveness was made. High 
quality recording is desired for accurate captioning, but close-
talking microphone with a signal-to-noise ratio (SNR) of about 40 
dB is undesirable since having a microphone close to mouth would 
interfere with lip reading, which is often needed by people with 
hearing loss. A wireless microphone system was chosen, where a 
lapel microphone was pinned to the cloths, which was unobtrusive 
to lip reading by hearing impaired clients, non-tethering to 
provider, and yielded a SNR of 25 dB that was higher and more 
consistent than SNR of far field microphone used in telehealth. 
Sampling rate of 16 KHz was used in recording. 

             3. MAJOR SYSTEM COMPONENTS 

The captioning system for telehealth with its major system 
components is shown in Fig. 1. Doctor and patient conversation 
speech is recorded and doctor’s speech stream is extracted from 
the conversation. Automatic speech recognition system delivers 
recognized words to the user interface module, where words are 
automatically annotated by confidence values, word rates/minute 
is estimated based on recognized words and duration of underlying 
speech to provide feedback to doctor for speech rate adjustment, 
and a pen edit function is provided to doctor to make selective 
corrections on caption word blocks. Doctor controls the timing of 
sending corrected captions to patient. 

Fig. 1 Proposed automatic captioning system for telehealth. 

3.1. Speech stream separation 
Two methods were investigated for separating speech streams of 
health care provider and client. One is based on statistical speaker 
identification with online adaptation of speaker models [7], and the 
other is based on echo-cancellation capability of teleconferencing, 
where the former uses single channel recording and the latter uses 
dual channels. The echo-cancellation based method is adopted in 
the currently described system due to its higher reliability, even 
though average error rates of the two methods are comparable. The 
dual channel recording works in the following way. On doctor’s 
site, wireless microphone acquires one channel input of speech 
conversation z, where provider’s speech is directly recorded and 
client’s speech come from a loud speaker mounted on the wall in 
provider’s room. The second channel input is from 
teleconferencing audio output of patient’s speech y. Sliding 
window of 0.1 sec. is applied to both recording channels in 
synchrony. For a window W(t), energy levels in the two channels, 
Ez(t) and Ey(t), are compared against respective thresholds, Tz and 
Ty, and a label L(t) is assigned to the current window data by the 
following classification rule: if Ey(t) > Ty, then L(t) = patient; else 
if Ez(t) > Tz, then L(t) = doctor; else, L(t) = pause. Note that the
decision rule discards competing speech of provider and client. 
     A counter is used to track successively detected pauses. If the 
count exceeds a threshold Tc, then the current record of doctor’s 
speech is ended and a new record is created. Speech records thus 
created captures from half a sentence up to five sentences, with 
majority of records containing one or two sentences. Subsequent 
speech acoustic model training and system evaluation tests are 
performed on speech records.  

3.2. Acoustic model 
Speech feature consisted of 39 components: 13 MFCC 
parameters 120 ,, cc  and their 1st and 2nd order time derivatives. 
Short-time analysis window size was 20 ms and shift was 10 ms. A 
total of 52 acoustic sound units were defined, including 42 speech 
monophone units, seven fill pause units, one unit for sound 
artifacts like lip smack and microphone ruffling, as well as one 
pause unit and one silence unit.  Context-dependent triphone 
modeling was used for speech, and context independent modeling 
was used for the rest sound units. Gaussian mixture density based 
Hidden Markov model (HMM) with three emitting states was used 
for triphone and other sound units, where each emitting state was 
modeled by a size-16 Gaussian mixture density with diagonal 
covariance matrix. Acoustic model parameters were estimated by 
using the HTK toolkit [8], where HMM states were tied by 
phonetic decision trees.

3.3. Language model
The described captioning task involves spontaneous dialog style 
speech in various medical specialty domains. The major difficulty 
faced by the language modeling task here is that transcriptions of 
telehealth conversation were very limited, and there were little 
accessible textual corpora elsewhere that match the domain and 
style of telehealth. In order to improve quality of trained language 
model (LM), textual data from other domains were used to enlarge 
vocabulary coverage and improve events estimation.  
        Telehealth captioning requires good lexicon coverage of 
medical terms and effective estimation of small n-gram events 
containing medical terms. Toward this goal, words related to 
medicine were grouped into semantic classes, for example, 
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Table 1. Word classes defined for telehealth and examples 

names of medicines, diseases, therapeutic techniques, etc. In 
addition, digits and peoples’ names were also categorized. The rest 
vocabulary words falling outside of these categories stand by 
themselves as singleton word classes. Table 1 shows the defined 
11 classes. Performance of language model trained by the 
proposed word class definition was proven superior to either part 
of speech based or automatic clustering based word classes [9]. 
     Supplementary text corpora used for LM training included 
public domain datasets of Switchboard, Broadcast News, and Call 
Home.  In addition, a medical written report dataset was collected 
in this project to ensure good coverage of medical vocabulary, and 
an additional telehealth related dataset on dermatology was 
acquired. The datasets were categorized as in-domain and out-of-
domain, where the in-domain ones included telehealth 
transcription sets and the telehealth related dermatology set, and 
the out-of-domain ones included Switchboard, Broadcast News, 
Call Home, and medical written reports.  
     Trigram LM was trained with Kneser-Ney backoff [10] by 
using the SRI toolkit [11].  Two ways of treating the in-domain 
and out-of-domain datasets were investigated. In the first case, 
class trigrams were trained for each dataset, generating six class 
trigram LMs. In the second case, two class trigram LMs were 
trained for the in-domain datasets, and four word trigrams LMs 
were trained for the out-of-domain datasets.  In either case, the six 
LMs were linearly interpolated into a mixture LM by using a ten-
fold validation on telehealth training set. The interpolation weights 
were optimized by a greedy forward selection algorithm [9] which 
combines a pair of LM at a time. The method yielded results 
slightly yet consistently better than commonly used EM algorithm. 
     The mixture LM of in-domain class trigrams and out-of-domain 
word trigrams, referred to as ICOW LM, was proven consistently 
the best over the mixture LM of all class trigram LMs as well as 
the mixture LM of all word trigram LMs. Significant performance 
gains were observed in reductions of test set perplexities which 
also translated into gains of recognition word accuracies for each 
speaker in speaker-dependent recognition tasks (Section 4). 

3.4. Decoding engine 
The speech decoding engine, TigerEngine v1.1, was developed in 
the Spoken Language and Information Processing Laboratory, 
Department of Computer Science of University of Missouri-
Columbia, USA [6]. The decoding system performs large 
vocabulary continuous speech recognition in real-time based on 
one-pass time-synchronous Viterbi beam search, and its search 
organization is based on the lexical tree-copy algorithm [12]. 
Acoustic and language knowledge sources, including cross-word 

triphone HMMs and trigram LM are integrated as early as possible 
in search organization with a trigram LM lookahead.

An innovation feature of TigerEngine is a very fast and memory 
efficient language model lookup method for trigram-based 
language model lookahead, called Order-Preserving LM Context 
Pre-computing (OPCP). Specifically, OPCP efficiently builds a 
language model context array for each new LM context: minimum 
perfect hashing (MPH) is used to access the first LM score of the 
new context, and sequential access is used for the rest LM scores. 
The LM lookahead score for a node of a compressed lexical tree is 
obtained by maximizing over the trigram LM scores of a word list 
stored at the tree node. Fast LM access is attributed to the reduced 
number of hashing operations and the use of fast integer-key based 
hashing for the small number of hashing keys. Memory saving is 
achieved by storing only the last word index of trigram and by 
using MPH with small number of keys. OPCP reduced LM lookup 
time to about 10% total decoding time without decrease of word 
accuracy. The total memory cost of OPCP for LM lookup and 
storage was about the same or less than the original N-gram LM 
storage. Both the percentage of decoding time and the memory 
usage of OPCP are much less than commonly used methods in 
comparable decoders, and the time and memory advantages of 
OPCP become more pronounced with the increase of LM size. 

3.5. Confidence annotation 
Recognition outputs are further analyzed by a confidence 
annotation unit that utilizes novel features derived from confusion 
network (CN) and a random forest based classifier. A confusion 
network provides position-aligned competitive words and it is a 
linear graph transformed from word lattice. For real-time 
captioning, a fast confusion network generation algorithm was 
developed which took about 0.1xRT [13]. From CN, posterior 
entropy, posterior bigram and trigram LM scores are computed as 
confidence features, where posterior entropy measures the  
property of word posterior probabilities in the same position in a 
CN, and posterior bigram and trigram LM scores measure word n-
gram probabilities conditioned on acoustic observation. Together 
with another novel feature of p-value that takes into account of 
Gaussian density spread better than likelihood in acoustic scores, 
and 8 previously proposed confidence features, a random forest 
based classifier is trained (see [14] for further details). The random 
forest based classifier achieved best performance in comparison 
with classifiers based on decision tree and support vector machine. 

3.6. User interface
As was discussed in Section 1, captioning word rate needs to be 
constrained below 150 words / minute to be appropriate for slow 
readers. It is therefore desirable to implement a module that 
monitors word rate delivery by doctor and signals doctor to slow 
down when necessary. A side benefit is that by slowing down, 
doctor’s speech may be better articulated and easier to be 
recognized. It was found that word rate estimated from recognition 
output word count aligned with speech input (2s window) was very 
close to the true word rate. A word rate signaling function based 
on such recognition word rate is being implemented into the 
system. 
     There is no doubt that caption errors need to be monitored to 
avoid causing confusions to patients. The above discussed 
automatic confidence annotation outputs are used to color code 
captions, for example,  words with higher confidence scores are 
given darker shade than words with lower confidence scores.  In 

Description Example 
Disease acalculia, paraplegia 

Medicine phenobarbital, precipitant 
Human Body & Organs follicle, capsule 

Meditation Method intubation, phototherapy 
Medical Equipment & Facility sigmoidoscopy, inhalator 

Symptom(noun) numb, stiffness 
Symptom(adjective) dizzy, drowsy 

Medical &Chemical Object peroxide, triglyceride 
Profession Name ophthalmologist, oncologist 

Person Name Garrett, Lewis 
Number One, two 
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addition, the ultimate control on error correction is provided by the 
system to the doctor. Currently a pen based online caption 
correction system is under implementation where doctor can hold 
up conversation momentarily to check captions saved in word 
blocks.  Errors that are deemed important by doctor can be 
corrected and the correct captions will be sent to patient. 

4. EXPERIMENTAL RESULTS 

The captioning task employed a vocabulary size of 46,489, with 
3.07% of vocabulary word being medical terms. At the current 
time, speech recording data of five doctors, two females (D1 and 
D5) and three males (D2, D3, D4), were processed to train and test 
the system. A summary on the sizes of the datasets is provided in 
Table 2. The conversation dataset contains patients’ speech, the 
training and test datasets together constitute doctor’s speech data 
extracted from the conversation data, and a subset of each doctor’s 
speech was set aside for use as test set. Word counts from 
transcription texts of the above doctors’ speech data is also given 
in Table 2.

Table 2. Datasets of 5 doctors: speech (min.) /text (no. of words).  
 Conversation Training set Test set 

D1 630 210 / 35,348 29.8 / 5,105 
D2 480 200 / 39,398 14.3 / 2,760 
D3 300 145 / 28,700 19.3 / 3,238 
D4 420 180 / 39,148 27.8 / 6,492 
D5 380 250 / 44,967 21.1 / 3,998 

     Since doctors who use telehealth systems use them on regularly 
basis, current efforts on the captioning system are focused more on 
accurate captioning for individual doctors than on minimizing user 
enrollment time. Towards this end, five speaker dependent (SD) 
acoustic models were trained with one for each doctor, and one 
multi-speaker (MS) acoustic model was also trained as a reference. 
Similarly, five language models were trained for individual doctors 
and one for the five doctors. Test set perplexity of the five doctors 
D1 through D5 from the speaker-dependent ICOW LMs were 
115.51, 84.49, 75.63, 116.84, and 107.12, respectively (lowest 
among all the LMs).   Captioning word accuracies on test sets of 
the five doctors are shown in Table 3. It is observed that accuracy 
varies among doctors, ICOW gives best results for all five 
speakers, and SD models are much better than the MS model. 
Compared across speakers, test set perplexity did not correlate well 
with word accuracy.  Rather, clarity of articulation, fluency of 
speech, speech rate were more critical factors in word accuracy. 
For example, D2 was recognized by listeners as a difficult speaker 
which correlated well with his low accuracy.  

Table 3. Captioning word accuracy (%) on five doctors for three 
types of LMs. For ICOW LM, both SD and MS results are shown. 
Average accuracy was weighted by dataset sizes. 

 Word-LM (SD) Class-LM (SD) ICOW-LM (SD/MS) 
D1 79.45 80.14 80.81 / 77.53 
D2 72.50 72.93 73.15 / 68.70 
D3 73.63 74.05 73.81 / 71.68 
D4 76.41 77.41 77.72 / 73.07 
D5 80.67 80.99 81.34 / 78.31 

Average 77.00   77.64 77.95 / 74.33 

     Confidence classification on speech recognition system outputs 
was produced by the random forest classifier with the 12 
confidence features and a forest with 500 trees. The results are 

shown for the five doctors in Table 4, where for the reported error 
rate, the false alarm rate was at the level of approximately 3%. 

      Table 4. Confidence error rate (%) for the five doctors. 
 D1 D2 D3 D4 D5 Average 

C-Err 13.16 17.55 17.83 15.90 13.26  15.26 

5. CONCLUSION

This paper presents a first exposition of an automatic captioning 
system designed for telemedicine system to assist patients with 
hearing loss in understanding doctor’s questions and instructions. 
While the captioning system is primarily designed for hearing 
impaired clients, it is expected to be useful for normal hearing 
clients as well. The current system achieved a respectable 
performance for certain doctors participated in the study. Future 
work include collection of more data, improvement in acoustic and 
language model training, and evaluation and refinement of user 
interface.
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