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ABSTRACT

Research in multilingual speech recognition has shown that current
speech recognition technology generalizes across different languages,
and that similar modeling assumptions hold, provided that linguis-
tic knowledge (e.g., phoneme inventory, pronunciation dictionary,
etc.) and transcribed speech data are available for the target lan-
guage. Linguists make a very conservative estimate that 4000 lan-
guages are spoken today in the world, and in many of these lan-
guages, very limited linguistic knowledge and speech data/resources
are available. Rapid transition to a new target language becomes
a practical concern within the concept of tiered resources. In this
study, we present our research efforts towards multilingual spo-
ken information retrieval with limitations in acoustic training data.
We propose different retrieval algorithms to leverage existing re-
sources from resource-rich languages as well as the target lan-
guage using a lattice-based search. We use Latin-American Span-
ish as the target language. After searching for queries consisting
of Spanish proper names in Spanish Broadcast News data, we ob-
tain performance (max-F value of 28.3%) close to that of a Spanish
based system (trained on speech data from 36 speakers) using only
25% of all the available speech data from the original target lan-
guage.

1. INTRODUCTION

Multilingual information search in audio archives is expanding at
an increasing rate as more audio data becomes available in dif-
ferent languages. In many cases, there are only a few or no lin-
guists in high-interest languages leading to a considerable shortfall
in transcription efforts within the task of acoustic model training
for a multilingual speech recognition system. Therefore, portabil-
ity to these new target languages becomes a practical concern. To
improve the universality of current speech technologies, effective
methods for rapid transition to new target languages using tiered
resources are required and this presents new research challenges.

Large vocabulary multilingual speech recognition has been an
area of intensive work at many research centers (e.g., [1, 2, 3]) for
resource-rich languages such as English, German, French, Span-
ish, etc. where there is linguistic knowledge for language model-
ing and lexicon construction, as well as sufficient training data to
train acoustic models. These studies employ an initial bootstrap-
ping step to align acoustic data with the text provided in the target
language using the source language acoustic models mapped via
either knowledge-based or data-driven based phoneme mapping.
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Spoken information retrieval (SIR) for these languages is not a big
challenge since they achieve reasonable performance at the recog-
nition level. When resources are limited in a target language (e.g.,
Dari, Pashto, Somalian, etc.), the text hypothesis of the speech
recognizer becomes more erroneous and this has a major impact on
the performance of spoken information retrieval. Existing methods
in spoken information retrieval would fail for this problem.

The problem of searching for spoken information through a
noisy audio stream has been considered in previous studies for
English [4]. In some studies such as [5, 6], the search is done
through the recognition lattice or N-best list rather than being ap-
plied to 1-best word strings by considering the fact that the lat-
tice structure provides additional information where the correct
hypothesis could appear. For the purpose of searching for OOV
words, sub-word (e.g., syllable, n-grams of mono-phones, etc.)
representation based SIR has been employed in many systems [7,
8]. These studies investigate a decision fusion method to merge
the retrieval results from systems using different representations
in a weighted scheme. In [9, 10], an error correction scheme at
the phoneme level is implemented via a confusion matrix, and
phonetic retrieval based on the probabilistic formulation of term
weighting using phoneme confusion data is presented.

Here, we will present our solution to the problem of multi-
lingual spoken information retrieval with tiered resources know-
ing that there will be high error rates during recognition. We per-
form recognition at the phone level using different representations:
source language mono-phones, target language mono-phones, and
broad-class phones, and generate lattices for each utterance. Ut-
terance lattices are indexed via weighted finite state transducers
(WFSTs) as explained in [6]. We propose two novel retrieval al-
gorithms. In the first algorithm, we use query-dependent dynamic
weights during decision fusion. These weights show how well the
pronunciation in the target language is represented with a given
representation. Our second algorithm searches for a hybrid pro-
nunciation network through a hybrid lattice where all representa-
tions coexist.

In Section 2, we present our formulation of several retrieval
algorithms. Recognition results and evaluation of the proposed
retrieval algorithms for Spanish are presented in Section 3. It is
important to note that sufficient resources clearly exist for Spanish
based ASR development. Our goal here is to intentionally limit
the available resources to see what performance can be achieved
as further data/resources are made available. Discussion and fu-
ture work are presented in Section 4. Conclusions are presented in
Section 5.
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2. RETRIEVAL ALGORITHMS

2.1. Baseline System: AlgorithmA – Weighted Parallel Lattice-
based Search

2.1.1. Acoustic Modeling and Sub-word Unit Recognition

In our system, knowledge-based (e.g., IPA mapping [11]) and data-
driven (e.g., confusion based) phoneme mapping are employed
consecutively during bootstrapping and iterative training steps. Ini-
tial Spanish acoustic models are trained using the alignment gen-
erated with mapped English phoneme models. Next, these Span-
ish acoustic models are used in the alignment step. This pro-
cedure is repeated until the recognition error rate converges to
a minimum. Alignments from the final alignment step are used
to generate confusion-based phoneme mapping by running recog-
nition on the Spanish training set with English acoustic models.
The resulting data-driven phoneme mapping is used during boot-
strapping and iterative alignment, and training steps are repeated.
We perform recognition at the phoneme level using source lan-
guage mono-phones, target language mono-phones, and broad-
class phones, and generate lattices for each utterance. We assume
that recognition at the word level is not feasible due to a lack of re-
sources for acoustic model training and language model training.

2.1.2. Lattice Indexation via Weighted Finite State Transducers

We implemented the indexation and search scheme presented in
[6] using AT&T’s Finite State Machine (FSM) Toolkit [12]. A
phone lattice for each speech utterance ul (l = 1, ..., n) is gener-
ated using a phonetic recognizer, and represented with the trans-
ducer index Tl . Transducer index T is constructed by taking the
composition of all utterance transducers Tl , l = 1, ..., n. The re-
sponse to a query x is computed using the general algorithm of
composition of weighted transducers [13]:

T = T1 ◦ T2 ◦ T3 ◦ ... ◦ Tn

S(x) = Px ◦ T S(x, u) = ιu(Px ◦ T ). (1)

S(x) is the list of all utterance indices and their corresponding log
likelihoods of containing query x. Applying the operator ιu to this
list gives the log likelihood of having query x in utterance u.

2.1.3. Embedding Confusion pairs into the query

Depending on how much audio data is available, one can use dif-
ferent methods to calculate confusion pairs. For the source lan-
guage, we can perform a recognition test where we use trained
acoustic models on a development test set to calculate the phonetic
confusion matrix. Here, we use the TIMIT [14] database for this
purpose since TIMIT is phonetically transcribed. Because there is
a sufficient amount of audio data, we can calculate class-context-
based trigram confusion probabilities such as the probability of
English phoneme AE being recognized as AX when it is followed
by the phoneme class STOP and preceded by the phoneme class
FRICATIVE, which is represented as follows:

Prob(AX|fricative − AE − stop).

For the target language, the phonetic confusion matrix gener-
ated in the same way would not be reliable since the confusion
statistics would be calculated from a small amount of data. To
overcome this problem, a confusion matrix in the target language
can inherit confusion statistics from the source language in two
ways:

• Source language confusion matrix entries where confusable
phoneme pairs exist in the target language are mapped to
the target language using the phoneme mapping developed
in Section 2.1.1.

• Confusion statistics are inherited at the decision-tree-class
level from the source language. Target language phonemes
not having a mapped source language phoneme share the
confusion probability with a same decision-tree-class (e.g.
alveolar-stop) target language phoneme.

The resulting confusion matrix in the target language is nor-
malized to have row values that sum to 1. One can calculate the
occurrence probabilities (e.g., unigram probabilities) of the target
language phonemes, and use them to scale confusion probabilities.
In the following sections, we will denote the resulting pronuncia-
tion network for the query x as P

{i}
x , and denote the resulting

lattice index as T {i} respectively, for the ith representation.

2.1.4. Decision Fusion

We form a new retrieval score by linearly combining the individual
retrieval scores obtained from different representations,

Si(x, u) = ιu(P {i}
x ◦ T {i})

S(x, u) =
N∑

i=1

wi Si(x, u) (2)

where wi is a tunable weight parameter1. In our experiments, N
is 3 since we use three sets of representations. The optimum value
for the weight parameter wi is found by performing retrieval tasks
on a development set. In the baseline algorithm, the wi values are
fixed for every query.

2.2. Algorithm B – Dynamically Weighted Parallel Lattice-
based Search

Within the concept of tiered resources, we consider the fact that
depending on the reference pronunciation of a query, wi values
might be optimum in the global sense, but not locally. In this algo-
rithm, we dynamically change the weight values for each query:

S(x, u) =

3∑

i=1

wxi Si(x, u) (3)

where wxi is a metric that shows how well the ith acoustic unit set
represents the reference pronunciation of the query word x. To be
able to define this mathematically, we use the following definition:

wxi(k) = wi α(k)Ik

wxi =

Lx∑

k=1

wxi(k) = wi

Lx∑

k=1

α(k)Ik (4)

where wi is the optimum value assigned in Alg. A, and Lx is the
number of phonemes in the reference query pronunciation. De-
pending on which representation these weights are calculated for,
α(k) can be interpreted as a similarity measure (e.g., 1st represen-
tation where source language mono-phones are used during recog-
nition) or a model confidence measure (e.g., 2nd representation
where target language mono-phones are used during recognition)
for the kth phoneme in query x as shown in Figure 1. Here, we
employ phoneme recognition accuracy (PRA) to assign values to
α(k).

1A Broad-Class (BC) representation has lower weight since it provides
less discriminative information during the retrieval task.
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Fig. 1. Interpretation of similarity measure α(k) in Eq. 4.

• When we decode the target language development test set
with the source language acoustic models, PRA represents
the similarity measure between the target language mono-
phone (kth phoneme in x) and its mapped entry in the source
language phoneme-set.

• When we decode the target language development test set
with the target language acoustic models, PRA represents
the model confidence measure for the target language acoustic
model corresponding to the kth phoneme in query x.

Ik in Equation 4 is set equal to either 0.5 or 1.0 depending on
whether the mapping shares the same IPA symbol or not, respec-
tively. In this way, we consider the linguistic similarity between
the phonemes in addition to the acoustic similarity. When α(k)
is calculated for the 2nd representation, I(k) has the value 0.5 for
every k since the pronunciation is represented with the same set of
phonemes. Using wxi, we quantify how well the given target lan-
guage pronunciation is represented with different acoustic model
sets. This helps to weight our retrieval results dynamically based
on the query pronunciation.

2.3. Algorithm C – Lattice-based search via hybrid pronunci-
ation networks

In this algorithm, we construct a hybrid representation for the recog-
nition lattice and the query pronunciation. In other words, the
recognition lattice and the query pronunciation network contain
source language mono-phones, target language mono-phones, and
broad-class mono-phones at the same time,

T{hybrid} = T {1} ◦ T {2} ◦ T {3} (5)

P
{hybrid}
x = (wx1 · P {1}

x ) ◦ (wx2 · P {2}
x ) ◦ (wx3 · P {3}

x ).
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Fig. 2. Hybrid pronunciation construction in Eq. 5.

In Eq. 5, hybrid pronunciation network P
{hybrid}
x is a compo-

sition of weighted pronunciation transducers. Each node of the
pronunciation network is weighted with the corresponding wxi(k)
as shown in Figure 2. wxi can be considered as a vector consisting
of wxi(k) values:

wxi = [wxi(1) wxi(2) ... wxi(Lx)]. (6)

The resulting retrieval score is calculated by applying the operator

ιu to the composition of P
{hybrid}
x and T{hybrid}:

S(x, u) = ιu(P
{hybrid}
x ◦ T{hybrid}) (7)

3. EVALUATION
To demonstrate performance for the proposed algorithms, we used
Spanish as the target language, and focused on a proper name re-
trieval task within the broadcast news domain. While other lan-
guages (e.g., Dari, Pashto, Somalian, etc.) are possible, we se-
lected Spanish to be able to intentionally limit the available re-
sources to see what performance can be achieved as further data/
resources are available? In other words, we could select the tier
level of resources (e.g., amount of training data) of interest for the
algorithms.

The acoustic model development was based on the Latino-40
database [14] with the aid of English Wall Street Journal (WSJ)
acoustic models via bootstrapping as explained in Section 2.1.1.
The Latino-40 comprises about 5,000 utterances, 125 utterances
from each of 40 different speakers (20 male, 20 female). We
trained two continuous density, context dependent (CD), gender
dependent (GD) Latino-40 models using data from 36 speakers
and 10 speakers for training: AMSPN36 and AMSPN10 , respec-
tively. We performed mono-phone recognition experiments on two
test sets: (1) testlatino40- 0.5 hour of speech (4 speakers, open
set) from Latino-40, and (2) testSPN−BN- 1 hour of speech from
Spanish Broadcast News (SPN-BN). We note that Spanish Broad-
cast News (SPN-BN) corpus is held out and employed only for
recognition and retrieval experiments rather than being used for
acoustic model training. As you can see in Table 1, four sets of
acoustic models are used during monophone recognition experi-
ments: AMSPN36 , AMSPN10 , AMENG and AMBC. When ENG-
lish acoustic models (AMENG) are used during recognition, de-
pending on the test set (testlatino40 or testSPN−BN), either Eng-
lish WSJ (ENG-WSJ) models or ENG Broadcast News (ENG-BN)
models, respectively, are adapted via Maximum Likelihood Lin-
ear Regression (MLLR). Spanish acoustic models are adapted via
MLLR as well during recognition experiment testSPN−BN. For
AMBC, we used 10 Broad Classes (e.g., vowel, nasal, glide, liq-
uid, plosive (v/u), affricates (v/u), fricative(v/u)) with voicing/un-
voicing (v/u) distinction. In all experiments, we used trigram phone
language models that are trained from Latino-40 phone transcripts
and mapped phone transcripts.

AMSPN36 AMSPN10 AMENG AMBC

testlatino40 18.4 23.2 46.3 11.3
testSPN−BN 31.8 38.7 54.2 23.1

Table 1. Phoneme Error Rates (PERs) (%) for Latino-40 and
Spanish Broadcast News tasks using different acoustic models.

Based on SPN-BN transcripts, we segmented the audio data
into shorter utterances where the gender information is provided so
that gender dependent acoustic models can be used during decod-
ing. For utterances shorter than 2 sec., and ones including overlap-
ping segments and music/filler/commercial portions are discarded
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during search. At the end, we have approximately 20K utterances
worth of search material. We use 20 queries (variable lengths from
6 to 14 phonemes) that are mostly proper names during our re-
trieval experiments. Pronunciation for these proper names are gen-
erated via Letter-to-Sound rules that are trained using a pronuncia-
tion dictionary of 5000 Spanish words from the Spanish Callhome
project. The top 1000 hits are considered during retrieval perfor-
mance calculation. In Table 2 and Table 3, in addition to average
precision values, we also compute the F-measure defined in terms
of precision and recall2 values:

F-measure =
2 × Precision × Recall

Precision + Recall
(8)

AMSPN36 AMSPN10 AMENG AMBC

Avg. Precision 26.7 22.4 17.1 5.3
Max F 29.2 23.4 18.8 8.2

Table 2. SIR performance in broadcast news domain.

As we can see in Table 2 and Table 3, the spoken information
retrieval system trained using a small amount of training material
from the target language, yields performance close to AMSPN36

that is fully trained on Spanish by using Algorithm C with acoustic
models AMSPN10 , AMENG and AMBC. A key observation here
is that a similar max-F and average precision values are obtained
by using 75% less acoustic data from the target language (avg. pre-
cision of 26.7% and max-F value of 29.2% in Table 2 versus avg.
precision of 26.1% and max-F value of 28.3% in Table 3). Another
observation is that Algorithm C improves the baseline system (Al-
gorithm A) by around 2% absolute in terms of max-F measure.

Algorithm A Algorithm B Algorithm C
Avg. Precision 25.6 25.8 26.1
Max F 26.5 27.2 28.3

Table 3. SIR performance via proposed algorithms using
AMSPN10 , AMENG and AMBC.

When the training set in the target language becomes less pho-
netically balanced, improvements obtained from the hybrid repre-
sentation in Algorithm C become more substantial compared to
other algorithms. These results are very promising, and suggest a
viable procedure to follow for future advances in spoken informa-
tion retrieval applications.

4. DISCUSSION AND FUTURE WORK

During the algorithm evaluations, our main goal was to find ef-
ficient algorithms to solve the data sparseness problem: how can
we achieve similar performance using less acoustic data? Our pro-
posed algorithms provide sufficient flexibility to leverage different
tiers at the search level.

Although retrieval performance rates are low due to the fact
that only mono-phones are used during retrieval, this knowledge
can be used appropriately to either reject low probability streams,
or provide further confidence using combined systems. It should
be noted that in a potential bilingual SIR application (e.g., proper
names from Somalian appear in English audio documents), results
from word-based retrieval for the source language and results from
phonetic retrieval for the target language can be merged to achieve
higher performance rates.

2Precision rate is the percentage of retrieved material actually rele-
vant. Average precision is calculated by averaging the precision values
over queries. Recall rate is the percentage of relevant material actually
retrieved.

Future work will focus on evaluating the existing framework
in other languages, especially ones having far less acoustic over-
lap with the English acoustic space. Finding a correlation between
the degree of acoustic overlap and retrieval performance improve-
ment would be important to estimate how much resource/effort is
needed to achieve a desirable performance in the target language.
This would be useful when resources from multiple resource-rich
languages (e.g., English, French, German, etc.) are leveraged with
the resources from target language.

5. CONCLUSIONS

We described the structure and development process of a multilin-
gual speech application using tiered resources. We performed ex-
periments for the task of spoken information retrieval in a Spanish
Broadcast News domain. We first generated a lattice using adapted
English mono-phones and broad-class phones, and Spanish mono-
phones trained from a limited amount of training data. Pronuncia-
tion for the query word is represented with a weighted transducer,
in which confusable pronunciations are embedded. The current
system achieved performance close to that of a Spanish system
(trained on speech data from 36 speakers) using only 25% of all
the speech data available from the target language. Given the time
and expense in collection and transcription of audio materials for
new languages, the proposed framework represents an important
step towards rapid transition of spoken information retrieval sys-
tems to new languages with limited resources.
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