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ABSTRACT

Traditional approaches to keyword spotting employ a large
vocabulary speech recognizer, phone recognizer or a whole-
word approach such as whole-word Hidden Markov Models.
In any of these approaches, considerable speech resources are
required to create a word spotting system. In this paper
we describe a keyword spotting system that requires about
fifteen minutes of word-level transcriptions of speech as its
sole annotated resource. The system uses our self-organizing
speech recognizer that defines its own sound units as a recog-
nizer for the speech in the speech domain under consideration.
The transcriptions are used to train a grapheme-to-sound-
unit converter. We describe this novel system and give its
keyword spotting performance.

1. INTRODUCTION

As the amount of human communications stored as recorded
speech continues to increase in a multiplicity of languages and
acoustic domains (e.g. “pod-casts”, radio and television news
archives), efficient means for finding speech of interest are in-
creasingly important. The basic approach to locating speech
passages of interest is through the occurrence of relevant key-
words. Traditional approaches to keyword spotting are usu-
ally based on large vocabulary word recognizers, phone recog-
nizers, or whole-word models that either use HMMs or word
templates. In each of these approaches a significant amount
of resources is required for building a useful word spotter.
Word recognizers require tens of hours of word-level transcrip-
tions as well as a pronunciation dictionary. Phone recognizers
require phone marked transcriptions and whole-word recog-
nizers require word markings for each of the keywords. All
of these types of annotations can be rather time consuming.
Also, word recognizers are, of course, unable to find words
that are out-of-vocabulary (OOV). OOV keywords are a com-
mon problem in many applications, as keywords of interest
can be quite transitory (e.g. Google’s weekly Zeitgeist [1]).
To handle OOV keywords, spotting approaches based upon
phone-level recognition have been applied to supplement or
replace systems based upon large vocabulary recognition [2].

For many applications of interest, such resources are not
readily available, if at all, rendering these traditional ap-
proaches unusable. The most obvious case is when we are
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dealing with a language for which the resources have never
been developed, but it also includes the situation where the
resources that are available are acoustically mismatched to
the domain of interest. Such mismatches can result in se-
vere performance degradations. This can occur when the
collection to be searched contains speech in channel condi-
tions other than the telephony or television audio channels
common for these corpora.

We present a novel approach capable of operating in such
extremely-limited-resource scenarios. All that is required is
the collection of speech to be searched and word-level tran-
scriptions for a very limited amount, as little as 15 minutes
worth, of this data.

The system that we develop is based on segmental models
[3]. The segmental model allows us to develop a phone-like
speech recognizer, automatically and without supervision, on
a speech corpus. The essential steps, of which more will be
said below, are segmentation, clustering and finally, using the
clusters, the creation of a segmental Gaussian mixture model
(SGMM). A SGMM is a Gaussian mixture model where the
mean of each mixture term is a time-normalized quadratic
trajectory in feature space that represents a sound unit of the
language. These units we term “discovered-units” and they
are phone-like and syllable-like units. This segmental mixture
model is used as a decoder where segmented input speech is
assigned the index of the maximum term of the mixture [3].
Thus the decoded speech is in terms of the SGMM indices.

We use the resulting segmental mixture model to decode
the speech recordings to be searched, generating transcrip-
tions in terms of the discovered-units. We also decode a lim-
ited subset of speech recordings, for which parallel text tran-
scriptions are available. Given these parallel transcriptions,
the Joint Multigram Model [4] is used to obtain a probabilis-
tic mapping between sequences of letters and sequences of
discovered-units. This model is then used to predict the “pro-
nunciation” of a given keyword, in terms of the discovered-
units modeled by the segmental model, thereby eliminating
the need for a pronunciation dictionary. Finally, a dynamic-
programming search, which minimizes the string edit distance
between the predicted pronunciation of the keyword, and the
discovered-unit transcription of each speech recording in the
collection, is used to find putative occurrences of the keyword.

Subsequent sections of this paper describe the various
components of the new approach and present experimental
results.
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2. SYSTEM COMPONENTS

This section briefly describes the various components of our
system for word-spotting with limited speech resources.

2.1. Subword-Unit Modeling of Speech via the Seg-
mental Speech Model

The major system components of the segmental speech model
are:

1) Segmenter: The segmenter segments all training and
test data based on the the occurence of spectral discontinu-
ities. The segments are nonoverlapping and variable dura-
tion. It produces segments that are phone-like and syllable-
like. It has no user-settable parameters and learns how to
segment based on statistcal models that are estimated from
the acoustics of the speech domain to which it is applied. It is
related to the type of model originally developed by J. Cohen
[5].

2) Clustering Algorithm: The clustering algorithm clus-
ters segments into a prescribed number of clusters equal to
the number of sound units that will be used to represent
the data. Each segment is modeled by a polynomial trajec-
tory/segment model and the distance between segment mod-
els defines the distance between segments for the clustering
algorithm. Specifically, a quadratic polynomial is used to
model the time-varying trajectory of the cepstral features.
That is, for a segment of length N frames, each feature di-
mension i is modeled as:

ci(n) = µi(n) + ei(n), n = 1 . . . N (1)

where ci(n) are the observed cepstral coefficients for the ith
feature dimension, and µi(n) is the quadratic polynomial:

µi(n) = bi1 + bi2n + bi3n
2, n = 1 . . . N (2)

Since we deal with varialble length segments the actual
modeling equations are modified to normalize all equations
to unit length. The details are contained in [3].

3) Segmental Gaussian Mixture Model (SGMM): As pre-
viously noted the SGMM [6] works as the speech recognizer.
Each cluster that results from the clustering algorithm ini-
tializes a term of the SGMM and it is trained by the EM
algorithm.

The details regarding estimation of parameters of the
segmental model are deferred to the above reference. Of
particular interest here is the fact that the creation of the
SGMM does not require any transcriptions or phonetic label-
ing for training. It is a completely self-organizing, unsuper-
vised process. Because of this, the SGMM can be trained on
speech from the collection of speech recordings to be searched,
thereby eliminating any acoustic mismatch between training
and operation conditions. As stated earlier, in the case of
a traditional large vocabulary or phone recognizer approach,
there will be a degradation in recognition accuracy, and sub-
sequently keyword spotting performance, if the collection of
speech recordings to be searched is acoustically mismatched
from the corpora used to train the recognizer.

In the system we describe here, we use this SGMM as
a simple decoder, which labels each input segment with the
index of the most likely model component, i.e. discovered-
unit. We use a fully ergodic recognition network, in which any
discovered-unit can follow any other one, and a null grammar.

The resultant sequence of discovered-unit indices serves as
a subword-unit transcription of the corresponding speech in
terms of the subword units found in the training speech.

2.2. Grapheme-to-Discovered-Unit Mapping via the
Joint Multigram Model

As stated earlier, for some low-resource languages, no pronun-
ciation dictionary may be available. Without such a dictio-
nary, a traditional large vocabulary speech recognizer cannot
be trained. In our approach, we do away with the require-
ment of a pronunciation dictionary by building a grapheme-
to-”phoneme” model, which we then use to predict the pro-
nunciation of a desired keyword, in terms of the discovered-
units modeled by our segmental model.

In particular, we employ the Joint Multigram Model de-
scribed in [4]. The joint multigram model is a statistical
model for mapping between variable-length symbol sequences
in one stream O and variable-length symbol sequences in an-
other stream Ω. A joint multigram model with parameters
n and ν establishes a mapping between symbol sequences
of length 1 . . . n in O to symbol sequences of length 1 . . . ν
in Ω. The model is estimated using an iterative maximum-
likelihood estimation procedure, and the resultant model can
then be used to map sequences in the alphabet of symbol
stream O into a corresponding sequence in the alphabet of
the other symbol stream Ω.

In our case, we use the joint multigram model to model a
correspondence between sequences of letters in the word-level
text transcriptions of some training speech, and sequences of
discovered-units in the segmental model transcriptions of the
same speech. Then, given an arbitrary keyword, its sequence
of letters is mapped into a sequence of discovered-units corre-
sponding to its most likely pronunciation. Thus, not only is
no pronunciation dictionary necessary, but the keyword need
not even have been observed in the training data. Since there
is no pre-defined dictionary, there are no OOV keywords.

2.3. Dynamic Programming Search

Given a keyword pronunciation predicted by the joint-multigram
model above, we search for its sequence of discovered-units in
the discovered-unit transcriptions of the speech recordings to
be searched. In that both the predicted pronunciation of the
keyword and the discovered-unit transcriptions of the speech
recordings may contain errors, we utilize a string-searching
algorithm which allows for insertions, deletions, and substi-
tutions in the search. We employ a dynamic programming
approach, known as the Smith-Waterman algorithm in the
computational biological literature [7], which minimizes the
edit distance between two strings. In this case the strings
being matched are the the keyword’s predicted pronuncia-
tion, and the discovered-unit transcription of a given speech
recording. The algorithm searches for the best starting point
of the keyword pronunciation string in the typically longer
discovered-unit transcription of speech recording. The resul-
tant edit distance is used as the score for the given recording,
with lower scores indicating better matches.

To mitigate the effects of errors in the predicted pronunci-
ations, we consider the top-N pronunciations predicted by the
joint-multigram model, and take the one yielding the mini-
mum edit distance with respect to a given speech recording.
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Also, as others have done with phonetic-recognition based
approaches to mitigate the effects of decoding errors, we uti-
lize lattice decode results rather than top-1 decoding results.
However, unlike traditional phone recognizers, segmentation
in our system is performed separately and prior to the ac-
tual decoding. Consequently, our decode lattices are of the
“sausage-link” network form, with multiple hypotheses span-
ning the a given segment. The Smith-Waterman search algo-
rithm is extended to consider the cost associated with each
possible symbol in a given sequence position, rather than the
single symbol in the case of top-1 decode results.

3. EXPERIMENTS

We evaluated our system using data from the Spanish Call-
Home corpus [8]. To train the (64 component) SGMM, we
used two hours of audio, equally sampled from thirty differ-
ent speakers from this corpus. We then used the segmental
model to decode the corpus of test utterances to be searched,
generating a discovered-unit transcription for each utterance.

Our test data consisted of 10,000 utterances, with an av-
erage length of 8.1 words each, totaling approximately 7 hours
worth of speech. From these 10,000 utterances, we searched
for occurrences of six different keywords listed in Table 1,
shown along with their frequency of occurrence in the test
set and in the 15-minute training set.

keyword frequency in test frequency in training

dinero 36 0
familia 15 2
problema 48 1
telefono 64 2
trabajo 54 1
universidad 31 0

Table 1. Keywords and frequency of occurrence in test set
and 15-minute training set

3.1. Minimal Training Data

We also used the segmental model to decode a separate collec-
tion of utterances to use, in conjunction with the correspond-
ing text transcriptions, to train a joint multigram model. We
used 15 minutes of transcribed data to train a n = 2, ν = 2
joint multigram model.

Figures 1 – 6 show the ROC curves obtained for the six
query words shown in Table 1. Superimposed on the same
graphs is the 45-degree diagonal corresponding to random
classification results. As these graphs indicate, detection pe-
formance is substantially better than random. It is worth
pointing out that for two of the keywords, “dinero” and “uni-
versidad”, there are no examples of the keyword in the joint
multigram model training data, as indicated in Table 1. This
demonstrates that a keyword can still be reasonably detected
even without it having been present in the training data. This
is important since, given the limited amount of training data,
many keywords of interest may not have been present in the
training data.

One useful way to summarize the detection performance
of this system is the following Figure Of Merit (FOM): The
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Fig. 1. ROC for “dinero” using 15 min. of transcribed data

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p(false alarm)

p(
de

te
ct

io
n)

ROC for "familia"

Fig. 2. ROC for “familia” using 15 min. of transcribed data

area below the ROC curve, in the “low” false-alarm rate range
(0 ≤ p(false alarm) ≤ 0.3), normalized by 0.3, the area under
the same region of the ROC curve when detection is perfect.
The FOM value in the case of random classification is 0.15.
Table 2 shows the FOM values for each of the keywords.

3.2. Increased Training Data

The above experiments were repeated using increasing amounts
of training data to measure what benefit might be obtained
if more transcribed data were available. A n = 2, ν = 2 joint
multigram model was trained for each amount of training
data. Table 3 shows the individual and average FOM values
obtained for 1/2 hour, 1 hour, 2 hours, and 5 hours worth
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Fig. 3. ROC for “problema” using 15 min. of transcribed
data
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Fig. 4. ROC for “telefono” using 15 min. of transcribed data
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Fig. 5. ROC for “trabajo” using 15 min. of transcribed data

of transcribed training data. As this table shows, the per-
keyword FOM can vary substantially as a function of amount
of training data. Also, we see that the average FOM value
does not increase monotonically as we increased the amount
of training data. This result was not expected and suggests
that perhaps we are not making the best use of the available
amount of training data.

4. CONCLUSIONS

We presented a novel approach for building a keyword spot-
ting system when only a very limited amount of transcribed
training data, and no pronunciation dictionary, are available.
With such limited resources, traditional keyword spotting
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Fig. 6. ROC for “universidad” using 15 min. of transcribed
data

keyword FOM value

dinero 0.34
familia 0.35
problema 0.27
telefono 0.36
trabajo 0.37
universidad 0.32
average 0.34

Table 2. Figure-Of-Merit (FOM) for keywords using 15-
minute training set

keyword 0.5 hour 1 hour 2 hours 5 hours

dinero 0.36 0.46 0.29 0.33
familia 0.38 0.35 0.28 0.52
problema 0.27 0.30 0.27 0.29
telefono 0.26 0.30 0.35 0.40
trabajo 0.31 0.39 0.43 0.39
universidad 0.35 0.35 0.26 0.27
average 0.32 0.36 0.32 0.37

Table 3. FOM for keywords using varying amounts of train-
ing data

approaches, based upon large vocabulary recogizers, phone-
recognizers, or whole-word models cannot be applied. Fur-
thermore, since our approach uses no dictionary, there are no
OOV keywords: the choice of keywords can be completely
arbitrary, and the keyword need not have been present in the
limited amount of transcribed training data.
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