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ABSTRACT

In this paper we study robust speaker recognition in far-
field microphone situations such as meeting scenarios. By
applying reverberation compensation and feature warping
we achieved significant improvements under mismatched
training-testing conditions. To capture useful information
from multiple distant microphones, two approaches for multi-
ple channel combination are investigated. This leads to 84.1%
and 78.1% relative improvements on the Distant Microphone
database. Furthermore, we tested the resulting system on
the ICSI Meeting Corpus. The improvements are also very
high on this task, which indicates that our system is robust to
changing conditions in a remote microphone setting.

1. INTRODUCTION

Speaker recognition is the process of determining the iden-
tity of the person who is speaking. In a world of ubiquitous
computation and communication, there are more and more
applications that require the recognition of a person from his
or her voice, such as verification of access permission, voice
aided transactions authentication, and multimedia database
management/retrieval. Speaker recognition systems are de-
sired to perform reliably in a variety of environments, tasks
and configurations. Moreover hands-free sound capture with
distant microphones is required by many real applications.

Speaker recognition has achieved fairly good performance
under controlled conditions as reported in the NIST annual
speaker recognition evaluation [1]. However, robust speaker
recognition with hands-free far-field microphones is still chal-
lenging.

Accurate far-field speaker recognition is difficult due to
a number of factors. Channel mismatch as well as environ-
mental noise and reverberation are two most prominent ones.
For example, linear channel effects will shift the mean of
Mel-Frequency Cepstral Coefficients (MFCC), and additive
noise will tend to modify the variance [2]. During the past
years, much research has been conducted towards reducing
the effect of channel mismatch. A number of methods for
reducing these effects were proposed. Cepstral Mean Sub-
traction (CMS) [3] and RASTA [4] are two of the standard
feature-based approaches. However, channel mismatch and

environmental noise can still cause lots of errors after CMS
and RASTA. To deal with additive noise, a feature warping
technique had been proposed that transforms the distribution
of cepstral features to a standard distribution [2]. This tech-
nique was reported to bring more improvements compared to
standard techniques. In this paper we propose a new reverber-
ation compensation approach. It uses a different noise estima-
tion compared to the standard spectrum subtraction approach.
We applied feature warping after reverberation compensation
in our system. The experimental results show that signifi-
cant improvements were achieved over the baseline system.
Furthermore, two multiple channel combination approaches
are investigated to capture useful information from multiple
distant microphones. They result in additional large improve-
ment over the baseline system.

2. DATABASE AND EXPERIMENTAL SETUP

2.1. Distant Microphone Database
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Fig. 1. Distant microphone setup in ISL meetings

In order to investigate robust speaker recognition with dis-
tant microphones, a speaker database was collected at the In-
teractive Systems Laboratories (ISL) in a meeting room using
multiple distant microphones. The left hand-side of Figure 1
shows the distant microphone setup. Five microphones (la-
beled 1 to 5) are hanging from the ceiling, while three micro-
phones (6, 7, and 8) are set up on the meeting table. We used
miniature cardioid condensor microphones that are very sim-
ilar to omni-directional microphones. Speakers tend to turn
their head slightly during the recordings but they do not move
their body too much. The right hand-side of Figure 1 illus-
trates the positioning of these 8 microphones in relation to the
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speaker. The grid indicates the distance definition and corre-
sponds to roughly 0.5 meters per grid unit. The vertical grid is
set to 4. The distance definition of a speaker to a microphone
is the Euclidean grid distance (horizontally and vertically) pe-
nalized by both the horizontal and vertical angles between
the speaker (sound source) and the microphone (the receiver).
For example, the distance of ceiling microphone channel 2
is computed as D(2) =

√
32+52+42

cos(arctan( 4√
34

)) cos(arctan( 3

5
))

= 10,

which is the Euclidean distance in both horizontal and ver-
tical planes divided by the cosine values of the angle in
horizontal plane and vertical plane respectively. The dis-
tances of other channels are computed similarly, which are
D(7) = 2, D(6) = 4.3, D(8) = 10, D(3) = 10, D(5) =
11.4, D(4) = 12, D(1) = 14.5.

There are 24 speakers in total in the Distant Microphone
database. Each speaker was recorded in one session. Each
speaker was required to talk about a selection of 10 given top-
ics of personal interest. So the speaking style is spontaneous
free speech. The speech duration varies from 8 minutes to 20
minutes. 2 minutes of speech was randomly chosen from the
first 80% of a speaker’s entire recording as training data for
that speaker. The remaining 20% of speech is split into 20
seconds segments and each of them is used as one test trial.
There are in total 183 test trials.

2.2. ICSI Meeting Corpus

The ICSI Meeting Corpus [5] is a collection of 75 meet-
ings with simultaneous multi-channel audio recordings col-
lected at the International Computer Science Institute (ICSI)
in Berkeley. There are a total of 53 unique speakers in this
corpus. We selected 24 speakers based on their positions and
whether they have enough speech in meetings. Figure 2 is a
simple diagram of the distant table microphone arrangement
in the ICSI meeting room and the speaker position we se-
lected. The table microphones are desktop omni-directional
Crown Pressure Zone Microphone (PZM) microphones. They
were arranged in a staggered line along the center of the con-
ference table. 90 seconds of speech was randomly selected
from meetings for each speaker as training data. The remain-
der speech was used for testing. We use the manual transcrip-
tion to keep the test segments as they are if they were not
longer than 20 seconds. Otherwise the segment is split into
several 20 seconds chunks. There are 397 test trials in total.

ChE ChF Ch6 Ch7

Fig. 2. Distant table microphone setup in ICSI meetings

2.3. Speaker Modeling and Performance Measure

Over the past decades, GMM has become the dominant ap-
proach for speaker modeling in speaker recognition systems
which use untranscribed training data [6]. In our system a

GMM with 128 mixtures was trained for each speaker via the
EM algorithm. We assume that the testing speaker is one of
the trained speakers, which means closed-set speaker recog-
nition is evaluated in this paper. The system performance is
measured using recognition accuracy, which is the percentage
of correctly recognized test trials over all test trials.

3. ROBUSTNESS TO FAR-FIELD

3.1. Methods

3.1.1. Reverberation Compensation

A distant-talking speech signal is degraded by additive back-
ground noise and reverberation. Considering room acoustics
as a linear shift-invariant system, the receiving signal y(t) can
be written as,

y[t] = x[t] ∗ h[t] + n[t] (1)

where the source signal x[t] is the clean speech, h[t] is the
impulse response of room reverberation, and n[t] is record-
ing noise. Cepstrum Mean Subtraction (CMS) has been used
successfully to compensate the convolution distortion. In or-
der for CMS to be effective, the length of the channel impulse
response has to be shorter than the short-time spectral analy-
sis window which is usually 16ms-32ms. Unfortunately, the
duration of impulse response of reverberation usually has a
much longer tail, as long as more than 50ms. Therefore, tra-
ditional CMS will not be as effective under these conditions.

We separate the impulse response h[t] into two parts h1[t]
and h2[t], where, h[t] = h1[t] + δ(t − T )h2[t]

h1[t] =

{
h[t] t < T

0 otherwise
h2[t] =

{
h[t + T ] t ≥ 0
0 otherwise

and rewrite formula (1) as

y[t] = x[t] ∗ h1[t] + x[t − T ] ∗ h2[t] + n[t]

h1[t] is a much shorter impulse response whose length is
smaller than the DFT analysis window, thus it can be com-
pensated by the conventional CMS. For x[t − T ] ∗ h2[t], we
treat it the same as additive noise n[t], and apply the noise
reduction technique based on spectrum subtraction. Assum-
ing the noise x[t − T ] ∗ h2[t] + n[t] could be estimated from
y[t − T ], then the spectrum subtraction is performed as,

X̂[t, ω] = max(Y [t, ω] − a · g(ω)Y [t − T, ω], b · Y [t, ω])

where a is the noise overestimation factor, b is the spectral
floor parameter to avoid negative or underflow values. We
can empirically estimate the optimum a, b and g(ω) on a de-
velopment dataset. We found that the system performance
is not sensitive to T . Within the range of 20-40 ms there
is no significant difference on the effect of the spectra sub-
traction. However, outside that range, performance degrades
significantly. For the recording setup in this paper, we found
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a = 1.0, b = 0.1 and g(ω) = |1 − 0.9ejω| optimal in most
changing conditions based on development data. Standard
CMS is applied after spectrum subtraction to eliminate the
effect of h1[t].

3.1.2. Feature Warping

The feature warping method applied here was proposed in
[2]. It warps the distribution of a cepstral feature stream to
a standardized distribution over a specified time interval. The
warping is implemented via Cumulative Distribution Func-
tions (CDF) matching as described in [7]. In our experiments,
the window size is 300 frames and the window shifts one
frame. Zeros are padded at the beginning and at the end of
the raw feature stream.

Table 1. Detailed baseline system performance (in %)
Train–Test Ch1 Ch2 Ch3 Ch4 Ch5 Ch6 Ch7 Ch8
Ch1 95.6 94.0 76.0 83.6 72.7 77.6 71.6 83.1
Ch2 61.2 100.0 86.3 70.0 84.2 94.0 89.1 88.0
Ch3 38.3 63.4 98.4 49.2 59.0 71.6 78.7 78.7
Ch4 71.0 83.1 70.5 87.4 59.6 83.1 77.6 84.2
Ch5 54.1 86.9 76.0 59.6 91.8 85.3 84.7 84.7
Ch6 49.2 77.1 78.1 47.0 76.5 90.7 90.7 76.0
Ch7 38.8 68.9 75.4 52.5 72.1 86.3 92.9 80.9
Ch8 62.8 85.3 78.1 65.0 86.9 85.3 89.6 95.1

3.2. Experimental Results

The front-end processing of the baseline system relies
on MFCC analysis. The signal is characterized by 13-
dimensional MFCC every 16ms. A speech detection process
based on normalized energy is used in order to remove non-
informative frames. The mean feature vector is computed
on the informative frames only. The non-informative frames
are discarded during training speaker models. The improved
system adds reverberation compensation and feature warping
(RC+Warp) in the front-end processing while keeping other
system components the same as the baseline system.

Table 1 presents the speaker recognition accuracy of the
baseline system under all possible training-testing conditions.
It shows that accuracies under matched conditions (numbers
in bold) are much better than under the mismatched con-
ditions (off the diagonal). The average accuracies under
matched and mismatched conditions are 94.0% and 74.2% re-
spectively.

Figure 3 shows the reverberation compensation plus fea-
ture warping effect on system performances on both data sets.
We can see that significant improvements were achieved un-
der matched and mismatched conditions on both data sets.
On average, 45.5% and 41.6% relative improvements are
achieved under matched and mismatched conditions respec-
tively on the Distant Microphone database, and 31.9% and
34.1% on the ICSI Meeting Corpus, indicating that the ap-
plied methods are robust under different conditions.
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Fig. 3. Performance improvement by RC+Warp

Table 2 shows the performance improvement by reverber-
ation compensation alone, feature warping alone and rever-
beration compensation plus feature warping on the Distant
Microphone database. Each of the two approaches improves
performance under both matched and mismatched conditions.
Combining both approaches provide more improvement.

Table 2. RC and Warp effect on system performance (in %)
Condition baseline RC Warp RC+Warp
Matched 94.0 94.8 96.4 96.7
Mismatched 74.2 78.1 79.1 84.9

4. MULTI-CHANNEL COMBINATION

4.1. Methods

Hands-free multiple distant microphones are easy to set up
and quite common in applications such as meetings and lec-
tures. In order to benefit from the multiple channel setup,
two multi-channel combination approaches are investigated:
one is applied at the data source level, the other at the deci-
sion level. “Data Combination” means the speaker models are
trained using data from multiple mismatched channels. For
example, for test on channel 1, the speaker models are trained
using all channels (Ch2 to Ch8) but channel 1. Consequently,
the training data does not cover the test channel, so that the
tests are still performed under mismatched condition. “Deci-
sion Combination” means combination of the decision scores
from the 7 GMM classifiers, each of which is trained on one
of the 7 mismatched channels. For example, test trials from
channel 1 are evaluated with 7 mismatched classifiers which
are trained on channel 2 to channel 8 and the 7 decision scores
are linearly combined with equal weights.

4.2. Experimental Results

Figure 4 presents the system improvement achieved by adding
the two multi-channel combination approaches to the im-
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proved system under mismatched condition. Significant im-
provements were achieved by both combination approaches
on both data sets. On average, 84.1% relative improvement
over the baseline was gained by data combination on the Dis-
tant Microphone database. We want to point out that in this
approach, we control the amount of training data to be the
same as in the baseline system by randomly choosing 1

7 data
from each of the original mismatched channel. So the im-
provement proves that seeing more variability in training im-
proves the recognition robustness. 78.1% relative improve-
ment over the baseline on average was achieved by decision
combination on the Distant Microphone database. This in-
dicates that it is beneficial to use information from multi-
ple sources even though each of them is not very powerful.
40.5% relative improvement was achieved by data combina-
tion and 37.8% was achieved by decision combination on the
ICSI Meeting Corpus. We also observe additional gain when
two combinations are used together. For example, 50.8% rel-
ative improvment over the baseline was achieved on the ICSI
Meeting Corpus compared to 40.5% and 37.8%.
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Fig. 4. Performance improvement by combination

5. CONCLUSION

In this paper we presented our robust speaker recognition sys-
tem in meeting scenario with multiple distant microphones. A
new reverberation compensation approach plus feature warp-
ing significantly improve the system robustness under mis-
matched training-testing conditions. 41.6% relative improve-
ment is achieved on the Distant Microphone Database and
34.1% relative improvement is achieved on the ICSI Meet-
ing Corpus. Furthermore, two multi-channel combination ap-
proaches are investigated in order to capture useful informa-
tion from multiple channel sources. 84.1% and 78.1% rel-
ative improvements are achieved with these two approaches
on the Distant Microphone database, which shows that see-
ing more variability in training and combining supplementary
information from multiple sources improves the system ro-

bustness. The improvement carries over to the ICSI Meeting
Corpus (40.5% and 37.8% relative improvement), which in-
dicates that our system is robust across datasets with different
multiple distant microphone settings.

Figure 5 shows the relationship between recognition ac-
curacy and channel distance on the Distant Microphone
database. Apparently the performance is a function of the
distance value: after surpassing a critical distance between
speaker and microphone (mic 5,4,1) the performance de-
creases significantly. The distance value can act as heuris-
tic information to better combine multiple channels at the
decision level. For example, we can give higher weights
to the decisions from the classifiers belonging to the closer
microphones. Our preliminary experimental results indicate
that such heuristic weights combination outperforms equal
weights combination.
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Fig. 5. Performance over microphone distance
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