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ABSTRACT 

This paper combines Gaussian Mixture Model-Universal 

Background Model (GMM-UBM) and Support Vector 

Machine (SVM) through post processing the GMM-UBM 

scores of different dimension feature parameter with SVM 

in speaker verification. Because different dimension feature 

makes different contribution to recognition performance and 

SVM has good discriminability, this combining approach 

yields significant performance improvements on decision-

making. Experiments on text-independent speaker 

verification in NIST'05 8conv4w-1conv4w data showed that 

the actual detection cost function (DCF) of the test system 

was reduced to 0.0290 from 0.0343.  

1. INTRODUCTION 

Current state-of-the-art approaches for text-independent 

speaker verification are based on Gaussian Mixture Model 

(GMM), which has good scalability and excellent ability in 

handling variable size sequences. In more recent years, 

Gaussian Mixture Model-Universal Background Model 

(GMM-UBM) has become the basis of the top performing 

systems in the NIST SREs for better performance and better 

robustness [1,2]. 

For better decision-making in the GMM-UBM speaker 

verification system, some decision-making methods have 

been proposed recently [2,3,4]. Traditionally, the decision-

making is based on a likelihood ratio of an utterance to the 

hypothesized speaker GMM and UBM. Because of its 

discriminative properties, Support Vector Machine (SVM) 

performs better performance in static classification [5,6,7] 

and can construct flexible decision boundaries [8]. Thus, 

SVM can be combined with GMM-UBM by post 

processing scores obtained from GMM-UBM. In [4], 

Bengio processed the scores of GMM and UBM with an 

SVM instead of the traditional log-likelihood ratio and 

made a better decision.  

In this paper, we propose an improved GMM-UBM/SVM 

to incorporate different dimension features' GMM-UBM 

scores using Support Vector Machines in text-independent 

speaker verification, because different dimension feature 

gives different contribution to recognition performance. 

The paper is organized as follows. In section 2, we recall 

the classical speaker verification based on the traditional 

GMM-UBM. In section 3, we first give a brief introduction 

to SVM and the GMM-UBM/SVM, then our new method is 

described in detail. The experimental results are shown in 

Section 4 while some conclusions are given in Section 5. 

2. BASELINE GMM-UBM 

We have used Gaussian Mixture Model-Universal 

Background Model (GMM-UBM) speaker verification 

system as a baseline system [1]. The UBM is a large GMM 

trained to represent the speaker-independent distribution of 

features, which is constructed from a set of background 

speakers. The speaker model is derived from the UBM 

using MAP adaptation with the corresponding training data. 

All the models are diagonal covariance GMMs. For better 

performance, only the mean vectors are adapted. 

Speaker verification can be described in terms of a two-

hypothesis problem in which the verifier must decide 

whether the speech presented was from the hypothesized 

speaker 
0H  or from an imposter

1H . Given an input 

sequence of T short-time speech feature vectors, 

}o,...,o,o{O T21
, the hypothesis can be tested using the 

likelihood ratio, 
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Where Tar  and UBM  represent models for the 

hypothesized speaker and imposter respectively. 

Furthermore, the log-likelihood ratio can be expressed as, 

)|O(log)|O(log)O(log UBMTar pp       (2) 

During processing the log-likelihood ratio is compared 

with a threshold, , in order to decide hypothesis  
0H  or 

1H . The observations are assumed statistically independent, 

therefore the log-likelihoods of the observation sequence to 
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the hypothesized speaker model and the imposter model are 

given by, 
T

1t
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3. POST PROCESSING GMM-UBM SCORES  

WITH SVM 

3.1. Support Vector Machine (SVM) 

Post processing GMM-UBM scores with SVM can be 

treated as a pattern classification problem if the given scores 

are considered as input patterns to be labeled as 

accepted/rejected. Under this point of view, any learning 

machine approach can be applied. In the last years, Support 

Vector Machine (SVM) has become an extremely 

successful discriminative approach to pattern classification. 

The principle of SVM relies on a linear separation in a 

high dimension feature space where the data have been 

previously mapped, in order to take into account the 

eventual non-linearities of the problem. An SVM classifier 

has the general form: 
l

i

iii bxxKyxf
1

),()(                      (5) 

Where liRx n

i ,...,2,1, are the training data. Each 

point of ix  belongs to one of the two classes identified by 

the label }1,1{iy . The coefficients i  and b are the 

solutions of a quadratic programming problem [9]. i  is 

non-zero for support vectors (SV) and is zero otherwise. K

is the kernel function. Classification of a test data point x is

performed by computing the right-hand side of equation (5). 

Typical choices for kernel function K are: 

Linear Kernel:              jiji xxxxK ,),(              (6) 

Radial Basis Function (RBF) kernel: 

                    )2/||||exp(),( 22

jiji xxxxK        (7) 

3.2. GMM-UBM/SVM 

In [4], Bengio incorporated the two scores obtained from 

GMM and UBM with an SVM. By Bayes decision rule, 

equation (2) is optimal so long as the hypothesized speaker 

and impostors are well modelled. Bengio proposed that the 

probability estimates are not perfect and that a better version 

would be, 

cpbpa )|O(log)|O(log UBMTar       (8) 

Where a, b and c are adjustable parameters. Given a set of 

training data and labels, these parameters may be estimated 

using any learning algorithm. Bengio learned these 

parameters by post processing the scores with an SVM. The 

input to the SVM is the two dimensional vector made up of 

the log-likelihoods of the hypothesized speaker GMM and 

the UBM.

3.3. Improved GMM-UBM/SVM

The log-likelihood ratio for a test sequence of feature 

vectors O can be computed as 
T

1t

UBMtTart )]|o(log)|o([log
T

1
)O(log pp    (9) 

The hypothesized speaker model was adapted from the 

UBM and the components of the adapted GMM retain a 

correspondence with the mixtures of the UBM, we can use a 

faster scoring method instead of merely evaluating the two 

GMMs [1].For each feature vector, select the top C scoring 

mixtures in the UBM and compute UBM likelihood using 

only these top C mixtures. Next, score the vector against 

only the corresponding C components in the adapted 

speaker model to evaluate the speaker's likelihood. Usually, 

a value of C=5 is chosen. Through experiments, as shown in 

Figure 2, we found that, when C=1 was chosen, similar 

performance was achieved. So in this paper, we determined 

C=1 in all GMM-UBM scoring experiments. Thus, GMM 

score can be replaced by a Gaussian mixture, equation (9) 

can be written as 
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Where i  and i  are the mutual weight and diagonal 

covariance of UBM and the GMM, id  and id  are their 

dissimilar means of the dth dimension feature.  

From equation (10), we can see that the score of system 

can be written as the sum of different dimension features’ 

GMM-UBM scores. If the score of different feature was 

regarded as the final system score respectively, the 

performance of the systems vary remarkably, as shown in 

Figure 1. Thus, we can easily get that the scores of different 

dimension features make different contribution to 

recognition performance. 
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Because the scores of different dimension features make 

different contribution to recognition performance, if we 

incorporate them using a SVM just like the GMM-

UBM/SVM system, the processed score will be more 

discriminable and a better decision can be made. For the 

feature is 32-dimensional in this paper, the input to the 

SVM is the 32-dimensional vector. 

Figure 1. The  EERs of the systems based on different 

dimension feature.

4. EXPERIMENTS 

4.1. Database 

To compare different approaches, we used the subset of the 

Switchboard telephone corpus used for NIST speaker 

recognition evaluations in 2005. Here, we used the 

8conv4w-1conv4w data. About 2 hour of speech from 

NIST'04 Dev training data was used to build the UBM with 

2048 Gaussians. Target models are derived by MAP 

estimation of the UBM parameters using the EVAL 

designated training data, only the mean vectors are adapted. 

Each of the 295 target speakers has about 20 minutes of 

speech for training. Among them 145 speakers are held out 

for training the SVM and deciding the threshold. 6882 

verification trials from the other 150 speakers are used for 

the test. So there is no speaker overlap between the SVM 

training data and test data. The duration of each test 

segment is about 2 minutes. The ratios between target and 

impostor trials in both evaluations are roughly 1:10. More 

details about the NIST evaluation can be found at [10]. 

The frame rate is set to 10 ms. 16-dimensional Mel-

frequency cepstral coefficients (MFCC) are extracted from 

silence-removed and bandlimited data first. The 16 delta 

coefficients are calculated based on the MFCCs and 

appended to form a 32-dimensional feature vector which is 

used in all the following experiments. 

4.2. Detection cost Function (DCF)

For better evaluation of the speaker verification system, we 

used a detection cost function (DCF) defined for the NIST 

evaluation: 

| arg arg

| arg arg(1 )

Det Miss Miss T et T et

FalseAlarm FalseAlarm NonT et T et

C C P P

C P P
     (11) 

The parameters of this cost function are the relative costs of 

detection errors, 10MissC  and 1FalseAlarmC , and the a 

priori probability of the specified target speaker, 

01.0arg etTP .

4.3. Experimental result

4.3.1. GMM-UBM top C selection

Three GMM-UBM verification results were compared when 

the top C mixtures were selected as 1, 5 and 2048 in 

NIST'05 8conv4w-1conv4w data. The experimental result 

was shown as Figure 2. We can see that the performance of 

the three systems was similar. So, we decided C=1 in the 

later experiments. 
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Figure 2. The DET curve of GMM-UBM when C=1, C=5 and 

C=2048. 

4.3.2. Improved GMM-UBM/SVM

To compare the performance of different systems’ decision-

making, we trained the SVM and recorded the threshold 

where the DCF is minimal using the training data. With the 

SVM and the estimated threshold, we got the test system's 

actual DCF using the test data.  

Table 1 gives the results of these experiments. The 

GMM-UBM/SVM system used a Linear SVM. In the 

improved GMM-UBM/SVM system, we compared a Linear 

I ­ 927



SVM as well as an SVM with an RBF kernel. These two 

systems were compared to the classical GMM-UBM system. 

We can see that GMM-UBM system yielded the worst 

results, while the improved GMM-UBM/SVM system with 

Linear kernel gave the best results. The relative 

improvement between the improved GMM-UBM/SVM and 

GMM-UBM is equal to 15.5%, which is particularly 

significant. 

 Train 

(min DCF) 

Test

(actual DCF)

GMM-UBM 0.0324 0.0343 

GMM-UBM/SVM 0.0315 0.0338 

Improved GMM-UBM/SVM 

(RBF) 0.0293 0.0333

Improved GMM-UBM/SVM 

(Linear) 0.0248 0.0290

Table 1. The minimal DCFs on the training data and the actual 

DCFs on the test data with the estimated threshold from the 

training data. 

From Table 1, we can also see that, in the improved 

GMM-UBM/SVM, Linear kernel performed much better 

than RBF kernel because of better robustness. 

Figure 3 shows the performance comparison of GMM-

UBM, GMM-UBM/SVM and the improved GMM-

UBM/SVM. It’s clear from the result that the improved 

GMM-UBM/SVM significantly outperforms both the 

traditional GMM-UBM and GMM-UBM/SVM. Obviously, 

substantial reduction was achieved in EER from 7.34% to 

6.03%. 
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Figure 3. The DET curve of GMM-UBM, GMM-UBM/SVM and 

improved GMM-UBM/SVM. 

5. CONCLUSION 

In this paper, we have presented a new approach to replace 

the traditional GMM-UBM log-likelihood ratio with an 

incorporated score using SVM in text-independent speaker 

verification. In the improved GMM-UBM/SVM, we post 

processed different dimension features’ GMM-UBM scores 

using SVM. This approach yields significant performance 

improvement on both decision-making and DET curve. 

Experiments in NIST'05 8conv4w-1conv4w data proved it. 
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