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ABSTRACT

This paper investigates the problem of how to partition unknown 

speech utterances into clusters, such that the overall within-cluster

homogeneity of speakers’ voice characteristics can be maximized.

The within-cluster homogeneity is characterized by the likelihood

probability that a cluster model, trained using all the utterances 

within a cluster, matches each of the within-cluster utterances.

Such probability is then maximized by using a genetic algorithm,

which determines the best cluster where each utterance should be 

located. For greater computational efficiency, also proposed is an 

alternative solution that approximates the likelihood probability

with a divergence-based model similarity. The method is further

designed to estimate the optimal number of clusters automatically.

1. INTRODUCTION 

Motivated by the increasing need for indexing and archiving the 

burgeoning amount of spoken data available universally, recent

research on automatic classification of speech samples based on

speakers’ voice characteristics has been extended from the 

traditional task of speaker identification/verification [1] to an 

unsupervised paradigm. This paradigm generally involves two 

problems: segmenting an audio recording into speech utterances

that contain only one speaker’s voice, and grouping utterances 

from the same speaker into a cluster. These two problems are often 

addressed jointly and termed speaker diarization [2]. It is hoped 

that, by locating utterances from the same speaker, the human

effort required for indexing speech data can be greatly reduced 

from having to listen to every long audio recording to only having

to check a few utterances in each cluster. In this paper, we

concentrate on the latter problem, referred to as speaker clustering

hereafter. Given N speech utterances, each of which is assumed

from one of the P unknown speakers, where N P, our aim is to 

partition the N utterances into M clusters, such that M = P, and 

each cluster consists of utterances from only one speaker.

Currently, the most prevalent method for speaker clustering is

a hierarchical clustering (HC) framework [3-8]. It computes the 

similarities of vocal characteristics between utterances, and then 

sequentially merges the utterances deemed similar to each other 

(agglomerative clustering), or alternatively, separates the utter-

ances deemed dissimilar to each other (divisive clustering). During

the agglomeration or division, it is aimed to maximize the 

similarities between all the utterances within a cluster. However, 

existing similarity measures, such as Kullback Leibler distance [4],

cross likelihood ratio [5,7], and generalized likelihood ratio [3,6],

are performed entirely on the spectrum-based features. Such

features are known to carry various types of information besides a 

speaker’s voice characteristics, e.g., phonetic and environmental 

information. As a result, there is no guarantee that the similarities

between same-speaker utterances will always be larger than the 

similarities between different-speaker utterances, especially when 

the utterances are short and noisy. Since the similarity computation

is independent of cluster generation, and the latter trusts the former

completely, the inevitable errors of similarity computation can

propagate down the whole process. In addition, cluster generation 

based on either agglomeration or division usually uses a nearest or

farthest neighborhood selection rule to determine which utterances 

can be assigned to the same cluster. However, since the selection

rule is commonly applied in a cluster-by-cluster manner, and no 

consideration is taken in respect of the interaction between clusters, 

HC can only make each individual cluster as homogeneous as

possible, but cannot guarantee that the homogeneity for all the 

clusters can be summed to reach a maximum.

To overcome the HC’s limitations, this study proposes finding 

the best partitioning of speech utterances by integrating the inter-

utterance similarity computation and the cluster generation into a 

unified process. The process iteratively assigns utterances to a set

of clusters and creates a stochastic model for each cluster, which

attempts to maximize the similarities between each cluster model

and the within-cluster utterances. To enable an efficient and

effective search for the best partitioning, we apply a model

adaptation technique, model similarity comparison method, and a 

genetic algorithm [9] to solve this problem.

2. MAXIMUM LIKELIHOOD CLUSTERING 

The proposed method begins with specifying how many clusters 

are to be generated. Given a specified number of clusters, M, the 

task is to assign N utterances X1, X2,…, XN to M clusters c1, c2, …, 

cM, where each utterance is represented by a frame-based feature 

vector stream, i.e., Xn = {xn,1, xn,2,…, xn,Tn}. Let hn denote the 

index of the cluster that an utterance, Xn, is assigned to, where hn

is an integer between 1 and M. The goal of optimal clustering, 

therefore, is to produce a set of cluster indices, H  = {h 1, h 2,…, h N}

satisfying h n = h k for any utterances Xn and Xk from the same

speaker. To this end, we first create a Gaussian mixture model

(GMM) (m) for each cluster cm, 1 m M, by using all the feature 

vectors of the utterances assigned to cm. Then, a certain level of

agreement that the utterances assigned to the same cluster come

from the same speaker is characterized by computing the

likelihood probability, Pr(Xn|
(m)), hn = m. Conceivably, the 

larger the value of Pr(Xn|
(m)), the more suitable cluster cm for 

utterance Xn will be. Thus, by taking the likelihood probabilities 

for all the utterances into account, H  can be determined using 
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where n is a GMM trained using Xn, and ( ) is a Kronecker Delta

function. Eq. (1) can be considered as the maximization of the 

generalized likelihood ratio (GLR) for all the clusters.

However, although the solution to Eq. (1) exists, no close form

can be derived from this equation directly. Moreover, since the 

cluster indices are not scalar objects, a gradient-based optimization

cannot be used in this scenario. It is also infeasible to perform an 

exhaustive search, which would examine all possible solutions to 

determine the best one, because there are M N possible 

combinations of cluster indices. Recognizing these difficulties, we

propose applying the genetic algorithm (GA) [9] to find H  by

virtue of GA’s global scope and parallel searching power. 

The basic operation of the GA is to explore a given search

space in parallel by means of iterative modifications of a 

population of chromosomes. Each chromosome, encoded as a 

string of alphabets or real numbers called genes, represents a 

potential solution to a given problem. In our task, a chromosome is

exactly a legitimate H, and a gene corresponds to a cluster index 

associated with an utterance. However, since the index of one

cluster can be interchanged with another cluster’s, multiple

chromosomes may amount to an identical clustering result. For 

example, the chromosomes {1 1 1 2 2 3 3}, {1 1 1 3 3 2 2}, and {2 

2 2 1 1 3 3} represent the same clustering result for grouping seven 

utterances into three clusters. Such a non-unique representation of

solution would significantly increase the GA search space, and 

may lead to an inferior clustering result. To avoid this problem, we 

limit the inventory of chromosome to conform a baseform

representation defined as follows. Let I (cm) be the lowest index of 

the utterance in cluster, cm = {Xn | hn = m; 1 n N}. A 

chromosome is a baseform

iff  cm and cl, if m < l, then I (cm) < I (cl). (2)

As can be seen from the above example, chromosome {1 1 1 2 2 3

3} is a baseform, since the lowest index of the utterance in the 1st,

2nd, and 3rd clusters is 1, 4, and 6, respectively, which satisfies Eq. 

(2). On the contrary, both chromosomes {1 1 1 3 3 2 2} and {2 2 2 

1 1 3 3} are not a baseform, since the lowest index of the utterance

in the 1st, 2nd, and 3rd clusters does not satisfy Eq. (2). It is 

conceivable that all the non-baseform chromosomes can be

converted into a unique baseform representation by interchanging 

between the cluster indices.

The GA optimization starts with a random generation of

chromosomes according to a certain population size Z. Then, the 

fitness of all chromosomes is evaluated and ranked on the basis of 

the overall model likelihood, i.e.,
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As a result of this evaluation, a particular group of chromosomes

is selected from the population to generate offspring by

subsequent recombination. Next, crossover among the selected 

chromosomes proceeds by exchanging the substrings of two

chromosomes between two randomly selected crossover points. A 

crossover probability is assigned to control the number of

offspring produced in each generation. After crossover, a mutation

operator is used to introduce random variations into the genetic 

structure of the chromosomes. This is done by generating a

random number and then replacing one gene of an existing 

chromosome with a mutation probability. The procedure of fitness

evaluation, selection, crossover, and mutation is repeated 

continuously, which hopes that the overall model likelihood will 

increase from generation to generation. When the maximum

number of generations is reached, the best chromosome in the

final population is taken as the solution, H*.

On the other hand, as the above optimization requires that M Z

GMMs be created during each GA iteration, the computational

complexity can be too high to implement properly if the

parameters of the GMMs are estimated via the expectation-

maximization [10]. To overcome this problem, we use a model

adaptation technique to generate cluster GMMs, instead of training 

them from scratch. Specifically, the method, stemming from the 

GMM-UBM method [11] for speaker verification, is to create a

cluster-independent GMM  using all the utterances to be clustered, 

followed by an adaptation of the cluster-independent GMM for

each of the clusters using maximum a posteriori (MAP) estimation.

3. MINIMUM DIVERGENCE CLUSTERING 

In addition to the training of cluster GMMs, another issue 

concerning the realization of Eq. (1) is the considerable com-

plexity of likelihood computation. Specifically, the standard pro-

cedure for computing Pr(Xn|
(m)) is wnT

t 1

J

j 1  j
(m)N (xn,t; j

(m), j
(m)),

which requires Tn J computation of Gaussian density N ( ). Thus, 

each GA iteration involves Z J  ( T
N

n 1 n) computation of Gau-

ssian density. When the number of utterances to be clustered is 

large, the whole clustering process can be extremely time

consuming. To overcome this problem, we further propose a 

clustering method based on an approximation of the likelihood by

a computationally more tractable metric, called divergence [12].

Recall that the likelihood Pr(Xn|
(m)) represents how well the

cluster GMM (m) fits the distribution of the feature vectors of Xn.

If we characterize the distribution of the feature vectors of Xn by

utterance GMM n, the computation of Pr(Xn|
(m)) should be 

roughly equivalent to a certain similarity measurement between

GMMs (m) and n. Let {wn,i,  n,i,  n,i, 1 i J} be the parameters

of n estimated via MAP adaptation from GMM . The similarity

between GMMs (m) and n can be measured by [13]
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is the divergence between Gaussian distributions N ( j
(m), j

(m)) and 

N ( n,i, n,i), Tr( ) denotes the trace of a matrix, and R is the 

dimension of the feature vectors. For greater computational

efficiency, we keep the mixture weights unchanged during MAP 

adaptation, i.e., w j
(m) = wn, j = wi, 1 j J. Since the mixture

components of (m) and n are aligned, Eq. (4) can be simplified as
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A large value of S( ) signifies a large level of homogeneity

between the utterances within a cluster. Thus, speaker clustering

can be converted into a problem of finding H  satisfying
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We refer to this clustering method as minimum divergence

clustering. Since Eq. (7) is independent on the length of utterance,

the computation complexity can be dramatically reduced, 

compared to the maximum likelihood clustering method.

4. ESTIMATION OF SPEAKER POPULATION SIZE

The proposed method described above is developed on the basis

that a certain number of clusters is specified in advance. However,

the optimal number of clusters, equal to the speaker population

size, is unknown and must be estimated. To do this, we propose 

examining all the possible partitionings of N utterances with the 

numbers of clusters ranging from 1 to N, and then selecting one of 

the partitionings associated with the level of within-cluster

homogeneity as high as possible and the number of clusters as

small as possible. Such selection can be made with the Bayesian

information criterion (BIC) [6,14].

The BIC scores a parametric model based on how well the

model fits a data set, and how simple the model is:

|,|log)(#5.0)|Pr(log)(BIC OO  (8) 

where #( ) denotes the number of free parameters in model , |O|

is the size of the data set O, and  is a penalty factor. The larger 

the value of BIC( ), the better model will perform. If we treat 

each of the possible partitionings as a parametric model for

characterizing the speaker information of the utterances, the BIC 

for a model having M clusters can be conceptually computed by
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where (m)  is the resulting GMM of cluster cm after the 

optimization according to Eq. (7). In Eq. (9), we use the 

divergence-based similarity measurement to represent how well

the model fits the data, which approximates the probability

Pr(O| ). The BIC value should increase with the increase of the M

value initially, but will decline significantly after an excess of

clusters is created. Thus, a reasonable number of clusters can be 

determined by choosing the partitionings that produces the largest 

value of BIC: 

. (10))Clusters(BICmaxarg
1

* MM
NM

5. EXPERIMENTS

Our speech data consisted of 197 utterances chosen from the test 

set of the 2001 NIST Speaker Recognition Evaluation Corpus [15],

which contains cellular telephone speech collected by the 

Linguistic Data Consortium. The 197 utterances were spoken by

15 male speakers, and the number of utterances spoken by each 

speaker ranged from 5 to 39. Speech features, including 24 Mel-

scale frequency cepstral coefficients, were extracted from this data 

using a 20-ms Hamming-windowed frame with 10-ms frame shifts. 

The performance of speaker clustering was evaluated on the

basis of two metrics: cluster purity [5] and the Rand Index [16].

Cluster purity is the probability that if we pick any utterance from

a cluster twice at random, with replacement, both of the picked 

utterances are from the same speaker. Specifically, the purity of 

cluster cm is computed by

,/
2

1 *

P

p mmpm nn   (11) 

where nm* is the total number of utterances in cluster cm, and nmp is

the number of utterances in cluster cm that were produced by the p-

th speaker. The overall performance of M-clustering is evaluated 

by an average purity:

.
1 * Nn

M

m mm
  (12) 

The Rand Index, which indicates the probability that two

randomly-selected utterances produced by the same speaker are

grouped into different clusters, or that two randomly-selected

utterances grouped into the same cluster are produced by different 

speakers, is defined by

P

p

p
M

m

m
M

m

P

p

mp
P

p

p
M

m

m nnnnn

1

*

1

*

1 11

*

1

*

222
2

22

 (13) 

where n*p is the number of utterances from the p-th speaker. Note 

that the higher the value of purity, or the lower the value of Rand

Index, the better the clustering performance is.

Our first experiment was conducted to assess the performance

of our speaker-clustering methods under the condition that the 

number of clusters is specified as the speaker population size (M = 

P = 15). For performance comparison, a baseline system using

GLR-based similarity computation followed by agglomerative

clustering [3,5] (referred to as GLR-AC hereafter) was also

evaluated. Table I shows the performance of the GLR-AC system.

We examined GLR computed with different numbers of 

component densities in Gaussian mixture modeling. Except for the

single-Gaussian models, which were full covariance structures and 

trained via maximum likelihood estimation, all the GMMs used in 

this study comprised diagonal covariance matrices and were

trained via MAP-adaptation. It can be seen from Table I that

speaker-clustering performance is less sensitive to the structure of 

Gaussian mixture modeling, but is rather sensitive to the choice of 

linkage for inter-cluster similarity computation. Overall, complete

linkage performs the best, whereas single linkage performs the

worst, and average linkage is between these two extremes.

However, all methods were far from accurate for this task. 

Table II shows the speaker-clustering results obtained by our

proposed methods, namely, maximum likelihood clustering (MLC)

and minimum divergence clustering (MDC). In GA optimization,

the parameter values used for the maximum number of generations,

the population size, the crossover probability, and the mutation

probability were empirically determined to be 3000, 200, 0.3, and 

0.1, respectively. Comparing Table I with II, it is clear that both

MLC and MDC are superior to GLR-AC. On the whole, both MLC

and MDC yield an average cluster purity above 0.7 and a Rand 

Index below 0.4, which signifies a relative improvement of more

than 30%, compared to the cluster purity of 0.52 and the Rand

Index of 0.53 obtained with GLR-AC. In addition, we can see from

Table II that the performance of MLC is slightly better than that of 

MDC. However, as mentioned earlier, MLC is rather

computationally extensive, due to the need to compute Gaussian

densities frame by frame. Quantitatively, MLC required 2000

times the computational time of MDC for this clustering task, and

took two weeks to complete a trial on a 3 GHz Pentium PC. This 

makes it difficult to use MLC to determine how many clusters

should be generated if the speaker population size is not known in 

advance. Therefore, in the following experiments, we concentrated 

on examining the validity of MDC-based speaker clustering.
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To investigate if the optimal number of clusters can be 

determined by Eq. (10), we divided the database into several

subsets involving speaker population sizes of 3, 6, and 9. We then 

conducted clustering experiments using these subsets separately to 

examine if the automatically-determined numbers of clusters could

be around 3, 6, and 9, respectively. For each of the speaker

population sizes, we organized three subsets that were mutually

distinct, as far as possible, in terms of the speakers involved. The 

penalty factor, in Eq. (9) was empirically set to 1.2 throughout 

this experiment. Fig. 1 shows the resulting BIC values as a 

function of the number of clusters. The peak of each curve in the 

figure indicates the optimal number of clusters according to the

BIC. We can see that most of the peaks appeared near the actual 

number of speakers, and the BIC values declined significantly after

an excess of clusters was created. This result validates the 

proposed method for estimating the speaker population size. 

Table 1: Speaker-clustering results (Purity / Rand Index) obtained 

with the GLR-AC method.

Inter-cluster SimilarityNo. of Gaussian

Mixtures Complete Linkage Average Linkage Single Linkage

1 0.51 / 0.54 0.38 / 0.69 0.17 / 0.83

2 0.48 / 0.63 0.36 / 0.75 0.17 / 0.84

4 0.50 / 0.57 0.39 / 0.68 0.16 / 0.84

8 0.52 / 0.53 0.35 / 0.78 0.16 / 0.84

16 0.52 / 0.54 0.34 / 0.79 0.16 / 0.84

32 0.51 / 0.55 0.33 / 0.79 0.16 / 0.84

Table 2: Speaker-clustering results (Purity / Rand Index) obtained 

with the proposed MLC and MDC methods.

Clustering Method No. of Gaussian

Mixtures MLC MDC

16 0.76 / 0.28 0.72 / 0.35 

32 0.78 / 0.27 0.75 / 0.29 

64 0.75 / 0.29 0.73 / 0.32 

50-Utterance Subset

29-Utterance Subset

25-Utterance Subset

2 4 6 8 10 12 14 16

No. of Clusters

-70.0

-60.0

-50.0

-40.0

-30.0

-20.0

B
IC

(a) Tests on 3-speaker subsets. 

88-Utterance Subset

80-Utterance Subset

59-Utterance Subset

3 6 9 12 15 18 21 24

No. of Clusters

-130.0

-120.0

-110.0

-100.0

-90.0

-80.0

-70.0

-60.0

B
IC

(b) Tests on 6-speaker subsets.

117-Utterance Subset

109-Utterance Subset

83-Utterance Subset

3 6 9 12 15 18 21 24 27 30

No. of Clusters

-160.0

-150.0

-140.0

-130.0

-120.0

-110.0

-100.0

-90.0

-80.0

B
IC

(c) Tests on 9-speaker subsets. 

3 6 9 12 15 18 21 24 27 30 33 36

No. of Clusters

-245.0

-240.0

-235.0

-230.0

-225.0

-220.0

-215.0

-210.0

B
IC

197 Utterances;

15 Speakers

(d) Test on the whole database.

Fig. 2. BIC values as a function of number of clusters. 

6. CONCLUSIONS 

This paper has studied methods for clustering speech utterances so 

that the level of within-cluster homogeneity can be maximized in

terms of speakers’ voice characteristics. Such homogeneity has

been characterized by either the likelihood probability that a 

cluster model tests for each of the within-cluster utterances, or the

divergence-based similarity between a cluster model and each of 

the within-cluster utterance models. To maximize the overall 

within-cluster homogeneity, we have proposed applying a genetic

algorithm to determine the best cluster where each utterance 

should be located. Experimental results show that the proposed 

method achieved a relative improvement of more than 30% in 

speaker-clustering performance, compared to the conventional 

method using GLR-based similarity measurement followed by

agglomerative hierarchical clustering. In addition, the proposed 

clustering method incorporates the Bayesian information criterion 

to determine how many clusters should be generated. The

experimental results show that the automatically-determined

number of clusters approximates the actual speaker population size. 
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