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ABSTRACT

Speaker recognition over a public telephone network involves
various types of transmission channels and handsets, which
leads to mismatched channels (between the enrolled models
and the test utterances), and hence to a significant decline in
the speaker recognition performance. In this paper a cohort-
based speaker model synthesis algorithm, which aims at syn-
thesizing speaker models for channels where no enrollment
data is available is proposed. This algorithm applies a pri-
ori knowledge of channels extracted from speaker-specific co-
hort sets to synthesize speaker models. Results for the China
Criminal Police College (CCPC) speaker recognition corpus,
which contains utterances from both a landline and a mobile
channel, show significant improvements over the HT-Norm
and UBM-based speaker model synthesis algorithms.

1. INTRODUCTION

Currently most speaker recognition systems are based on the
Gaussian mixture model-universal backgroundmodel (GMM-
UBM) [1]. One of the most important and exigent problems
is the channel effect. Different types of transmission chan-
nels and handsets lead to different distortions on speech sig-
nals. In real applications, a speaker usually enrolls his or
her voice through one channel, while the test utterance most
likely comes from a different channel. This channel mismatch
between speaker model and test utterance often leads to a sig-
nificant decline in speaker recognition performance.

To alleviate the channel effect some channel compensa-
tion algorithms have been proposed. These compensation al-
gorithms can be categorized into three types based on domain
of application: the feature domain, the model domain, and the
score domain. The feature domain compensations attempt to
remove the channel distortions from the feature vectors, typi-
cally by using feature warping [2], short-time Gaussianization
[3], or RASTA filtering [4]. The model domain compensa-
tions try to alleviate the channel effect with the parameters of
channel-dependentmodels as a priori knowledge of channels,
including UBM-based speaker model synthesis(SMS) [5] and
feature mapping [6]. The score domain compensations are

most widely used, including H-Norm [7], HT-Norm [8], and
AT-Norm [9], which aim at removing the channel effect by
normalizing the recognition scores with a priori knowledge
of channels.

UBM-based SMS learns how the speaker model param-
eters change among different channels, and uses this infor-
mation to synthesize speaker models for channels where no
enrollment data is available. It utilizes channel-dependent
UBMs as a priori knowledge of channels for speaker model
synthesis. This algorithm assumes that all the speakers are
subject to the same model transformation between two dif-
ferent channels; however in reality different speakers may be
subject to different model transformations. In order to reflect
the speaker dependency of speaker model transformations, a
cohort-based SMS is proposed as an enhancement of existing
UBM-based SMS. In this algorithm, there will be a univer-
sal cohort set, which consists of a group of cohort speakers.
Each of the cohort speakers has models enrolled from every
channel. For each speaker, a speaker specific-cohort subset is
selected from the universal cohort set under the criterion that
all the cohort speakers’ voice are similar to the correspond-
ing speaker’s voice. Cohort-based SMS utilizes the model
transformations of cohort speakers in the speaker-specific co-
hort subset to estimate the model transformation of the corre-
sponding speaker, under the assumption that similar speakers
will share similar model transformations between two chan-
nels. Experimental results show that the proposed cohort-
based SMS outperforms UBM-based SMS.

The remainder of this paper is organized as follows. In
Section 2 a brief review of UBM-based SMS is given. In Sec-
tion 3 the cohort selection algorithm and the model synthesis
algorithm for cohort-based SMS are described. Experimental
results and analysis of cohort-based SMS are given in Sec-
tion 4. Finally, discussions of the results and suggestions for
further research are presented in Section 5.

2. UBM-BASED SPEAKER MODEL SYNTHESIS

UBM-Based SMS uses channel-dependent UBMs as a pri-
ori knowledge of channels to perform speaker model syn-
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Fig. 1. Model-construction structure of UBM-based SMS [6]

thesis. In this algorithm, first of all, a channel-independent
root UBM is trained using data from all channels, and then
several channel-dependent UBMs are adapted from the root
UBM using data from corresponding channels. Each speaker
model for a specific channel is adapted from its corresponding
channel-dependent UBM. This model construction structure
(as illustrated in Fig.1.) ensures a relatively precise corre-
spondence between Gaussian components in the models. For
a speaker model enrolled in channel 1, parameters of the i-
th component of its synthesized model in channel 2 are esti-
mated as follows,

µch2
speaker,i = µch1

speaker,i + (µch2
ubm,i − µch1

ubm,i) (1)

ωch2
speaker,i = ωch2

ubm,i (2)

Σch2
speaker,i = Σch2

ubm,i (3)

where µch1
speaker,i and µch1

ubm,i are the mean vectors of the orig-
inal enrolled speaker model and the corresponding channel-
dependent UBM in channel 1, respectively, and (ω ch2

ubm,i,

µch2
ubm,i, Σ

ch2
ubm,i) are the parameters of the channel-dependent

UBM in channel 2. Since the speaker models are usually
trained from the channel-dependent UBMs by adapting the
mean vectors only, the weights and variances of the synthe-
sized model are set the same as those of the corresponding
channel-dependent UBM.

3. COHORT-BASED SPEAKER MODEL SYNTHESIS

3.1. Cohort Set

The model construction structure of cohort-based SMS (as il-
lustrated in Fig.2.) is similar to that of UBM-based SMS ex-
cept that an additional universal cohort set is adopted, from
which a speaker-specific cohort subset is selected for each
speaker. The universal cohort set consists of a group of co-
hort speakers, each of whom has models enrolled from every
channel.

The speaker-specific cohort subset is chosen as follows.
For a given speaker, its speaker-specific cohort subset con-
sists of the first N most similar cohort speakers to it in the
universal cohort set, where the speaker similarity is measured
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Fig. 2. Model construction structure of cohort-based SMS

by the Kullback-Leibler (K-L) distance between the speaker
model and the cohort speaker model in the channel where the
speaker enrolls. The K-L Distance between two random dis-
tributions is defined as follows,

KL(f, g) =
∫

f(x)log
f(x)
g(x)

dx +
∫

g(x)log
g(x)
f(x)

dx (4)

where f and g are the GMMs of the speaker model and the co-
hort speaker model, respectively. The K-L Distance between
two GMMs is computed with the Mento-Carlo algorithm de-
scribed in [10]. The size of the speaker-specific cohort subset
is set to be 20 empirically.

3.2. Speaker Model Synthesis

For each speaker the corresponding speaker-specific cohort
subset serves as a priori knowledge of channels during the
speaker model synthesis. For a speaker model enrolled in
channel 1, the mean vector of the i-th component of its syn-
thesized model in channel 2 is estimated as follows,

µch2
speaker,i = µch1

speaker,i+
1
N

N∑
j=1

(µch2
cohort,j,i−µch1

cohort,j,i) (5)

where µch1
speaker,i is the mean vector of the original speaker

model in channel 1, and µch1
cohort,j,i and µch2

cohort,j,i are the
mean vectors of the j-th cohort speaker in the speaker-specific
cohort subset in channel 1 and channel 2, respectively, and N
is the size of the speaker-specific cohort subset. The weights
and variances of the synthesized model are set the same as
those of the corresponding channel-dependent UBM.

The key difference between UBM-based SMS and cohort-
based SMS is the estimation method of the mean transfor-
mation vector (µch2

speaker,i − µch1
speaker,i) between the original

enrolled speaker model and the synthesized speaker model.
UBM-based SMS assumes that the mean transformation vec-
tor of the speaker models is the same as that of the two channel-
dependent UBMs, in other word, all the speakers are sub-
ject to the same speaker-independent model transformation
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between two channels. In contrast, cohort-based SMS esti-
mates the mean transformation vector of the speaker models
using the average of those of the cohort speaker models in the
corresponding speaker-specific cohort subset. This algorithm
suggests the idea that similar speakers are subject to similar
model transformations between two channels, and thus uti-
lizes more speaker-specific a priori knowledge of channels for
speaker model synthesis than that of UBM-based SMS.

4. EXPERIMENTS

4.1. Data Description

The system was tested on a speaker recognition corpus pro-
vided by the China Criminal Police College (CCPC). This
corpus contains male speech data from both a landline and
a mobile channels. The corpus is divided into three subsets,
a development data set, a cohort data set, and an evaluation
data set. The development data set was used for training the
root and the channel-dependent UBMs. The cohort data set
was used for constructing the universal cohort set. In our
experiments, the universal cohort set contained 484 cohort
speakers, each of whom was enrolled from both channels.
The evaluation data set contained 400 enrolled speakers, of
whom 200 were enrolled from the landline channel and 200
were enrolled from the mobile channel. Each enrolled speaker
had two test utterances, one from the landline channel and
the other from the mobile channel. The evaluation data set
also contained 700 test utterances from 284 impostors through
both channels. On average, the enrollment utterances con-
tained 44.8 seconds of pure speech, and the test utterances
contained 15.7 seconds of pure speech. In the experiments,
each test utterance was scored against 400 enrolled speaker
models.

4.2. Systems Description

The feature vector consisted of 16 mel cepstral coefficients
plus delta, which were computed with 20ms frame length ev-
ery 10ms. The cepstral mean subtraction (CMS) was per-
formed over the whole utterance. Each UBM consisted of
1024 components. The cohort-based SMS was comparedwith
four different systems.

1. Baseline: This system was constructed according to
the typical GMM-UBM algorithm. It had a single UBM trained
using the channel balanced development data set.

2. HT-Norm: In this system, the UBM was the same as
that of the baseline, and the typical HT-Norm algorithm was
applied.

3. UBM-based SMS: The system used the same root
and channel-dependent UBMs as those of cohort-based SMS
trained using the development data set.

4. Upperbound: In this system, each of the speakers has
models enrolled with real data from every channel. This sys-
tem served as the upperbound for SMS systems.
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Fig. 3. DET comparison among baseline, HT-Norm, UBM-
based SMS, cohort-based SMS (cohort subset size 20),
cohort-based SMS + HT-Norm, and upperbound system

For UBM-based SMS, cohort-based SMS and the upper-
bound system, the channel-dependent UBMs served as chan-
nel detector. The channel type of each test utterance was first
determined, and then speaker models of the corresponding
channel were used for recognition.

4.3. Results

Fig.3. shows the performance of the cohort-based SMS sys-
tem with 20 cohort speakers per speaker-specific cohort sub-
set as compared with the four baseline systems. The results
show that cohort-based SMS outperforms both UBM-based
SMS and HT-Norm, and the combination of cohort-basedSMS
and HT-Norm outperforms each of the algorithms applied in-
dependently.

Fig.4. illustrates the performance of the cohort-based SMS
with various speaker-specific cohort subset size. It shows that
the performance first improves and then worsens as the size
of the speaker-specific cohort subset increases. Such a re-
sult is reasonable. When the subset size is too small, the bias
of the mean transformation vector estimated in equation (5),
will impose a drawback on the effect of the SMS; as the sub-
set size increases, the bias in the estimation is eliminated by
the average over a larger subset; However, as the subset size
continues to increase, the average of the subset approximates
the average of the whole channel, that is to say, the mean
transformation vector of the subset relegates to that of the
channel-dependent UBMs and eventually loses the speaker-
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Fig. 4. Equal error rate of cohort-based SMS performance
with varied speaker-specific cohort subset size
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Fig. 5. Average K-L distance between actually enrolled mod-
els and synthesized models

specific a priori knowledge of channels in the subset. It can
be seen from the results that when the size of the speaker-
specific cohort subset increases to that of the universal cohort
set, the performance of cohort-based SMS approximates that
of UBM-based SMS.

Another experiment was designed to further prove the re-
lationship between the size of the speaker-specific cohort sub-
set and the performance of cohort-based SMS. For each syn-
thesized speaker model in cohort-based SMS, an actual model
was enrolled with the corresponding speaker’s speech from
the channel of the synthesized model. The average K-L dis-
tance between synthesized models and corresponding actual
enrolled models was computed with varied speaker-specific
cohort subset sizes, and the result is illustrated in Fig.5. It
shows that the trend of the changes of average K-L distance
between actual enrolled models and synthesized models, which
indicates the quality of SMS, is the same as that of the perfor-
mance of cohort-based SMS, and it further proves the causes
of this relationship we discussed in the previous paragraph.

5. CONCLUSIONS

The cohort-based SMS presented in this paper has achieved
significant improvement in alleviating channel distortions for
speaker recognition. However, there are still some problems
that need further research to make it more practical. Firstly,
this algorithm requests a large number of cohort speakers with
enrollment data in each channel, which is a too demanding

condition in real applications. Further studies are needed on
how to choose the proper size of the universal cohort set. Sec-
ondly, since both UBM-based SMS and cohort-based SMS re-
quire that the channel of the UBM or the universal cohort set
be well matched with that of the synthesized models, whether
the idea of SMS can be adapted to synthesize speaker mod-
els for a channel which does not perfectly match with that of
the UBM or the universal cohort set is another topic of future
study.
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