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ABSTRACT

This paper presents a practical approach to constructing a
large-scale speech corpus for corpus-based speech synthesis.
This consists of (1) selecting a source text corpus that fits lim-
ited target domains; (2) analyzing the source text corpus to
obtain the unit statistics; (3) automatically extracting prompt
subjects (sentences) from the source text corpus to maximize
the intended unit coverage with the given amount of text; and
(4) recording prompt subjects while controlling such critical
factors that cause undesirable voice variability. This paper
describes related computational methods, such as a greedy al-
gorithm for prompt selection, the proximity effects found in a
real recording system, and a technique for detecting the time-
dependent voice variations. While the approach is demon-
strated in English, it is also promising for other languages.

1. INTRODUCTION

One of the main trends in constructing text-to-speech (TTS)
systems is to apply corpus-based unit selection technology,
as exemplified in [1]. As anyone who has built a unit se-
lection synthesizer knows, the quality of synthetic speech is
highly dependent on the unit coverage of a speech corpus [2].
Because it is time- and cost-consuming to construct a large-
scale speech corpus, designing appropriate prompt subjects
(sentences) is necessary for reducing the corpus size and max-
imizing the unit coverage of a spoken language, as described
in [2], [3], and other works. On the other hand, recording such
a speech corpus may still last from several weeks to months.
This poses an important problem: how to avoid in the record-
ing short-term (daily) and long-term (monthly) variations in
voice quality [4]. This is important because concatenating
speech segments with different voice qualities produces au-
dible discontinuities that degrade the naturalness of synthetic
speech. While a few techniques have been proposed to cor-
rect voice variability in a large speech corpus, as described in
[5] and [6], our experiments in [7] indicated that active correc-
tion of the channel variability in a speech corpus, for example,
would to some extent cause degradation of voice quality.
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The rest of this paper is organized as follows. Section
2 describes a practical approach, focusing three main stages:
designing prompt subjects to fit a few target domains; sup-
pressing the critical factors related to time-dependent voice
variability while recording the prompt subjects; and detecting
voice quality variations in the recording. Section 3 presents
experimental results, and Section 4 concludes this paper.

2. DESCRIPTION OF THE APPROACH

A recorded speech corpus needs to reflect the target domains,
in particular, by being phonetically balanced. Achieving cov-
erage is straightforward for limited domains but very difficult
for others, since perfect quality open-domain synthesis is not
yet possible [2]. Thus, designing prompt subjects involves the
following stages:
• Select a source text corpus to fit the target domains.
• Analyze the source text corpus to obtain the unit statistics.
• Select appropriate prompt subjects from the source text.
• Inspect and remove unsuitable sentences.

2.1. Source text selection and analysis

• Determine target domains. There exist two common do-
mains related to TTS applications: news-reading and conver-
sation applied to spoken language communication systems. In
the experiment described here, two text corpora are adopted:
a Basic Travel Expression Corpus, henceforth referred to as
BTEC, which was collected at ATR, and an English newspa-
per corpus, hereafter, NEWS. Both are assumed to meet the
intended domains (simple conversation and news-reading).
• Use Festival [8] to analyze a source text corpus to obtain the
statistics of basic units (monophones, diphones, triphones),
POS (part of speech), and existing diphone and triphone types
in the text corpus. This consists of a few steps: (1) Decom-
posing every paragraph in the text corpus into utterances (a
predicted unit in [8] whose size extends from a phrase to a
clause). (2) Grouping utterances into sentences determined
simply by specific punctuation marks, such as “. ! ?”; thus
a sentence may comprise one or more utterances. Note that
there might exist wrongly phonetized words due to OOV (out-
of-vocabulary) such as proper names and potential typos in
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text. Also, we have considered including words with only a
single pronunciation by excluding homographs, but the effect
is very limited. Accordingly, there exist 34 POS tags and 40
phonemes plus an extra one /pau/ (pause/silence). A /pau/ is
always assumed at the beginning and end of a sentence, and
it is also used to separate any two adjacent utterances.
• Measure divergence in unit statistics between two sources
by the symmetrizing Kullback-Leibler divergence:

KL(P (pi), Q(qi)) =
n∑

i=1

(
pi

2
× ln

pi

qi
+

qi

2
× ln

qi

pi

)
. (1)

P (pi) and Q(qi), i = 1, 2...n, each represents the unit prob-
ability distribution of one of the two sources. A unit set may
be POS (n = 34), monophones (n = 40), diphones (n = 1,680
(= 41× 41 -1 (/pau/-/pau/)), and triphones. The two sources
may be either BTEC and NEWS or a source text corpus and
prompt subjects extracted from the source text corpus.

2.2. Prompt subject generation
2.2.1. Coverage definition

To select a sentence set from a large text corpus, it is neces-
sary to define the metric of coverage of the sentence set [3].
Let X have elements {µx

1 , µx
2 , ..., µx

nx
}, where nx is the num-

ber of elements. X indicates a unit type, such as diphone,
triphone, or POS. That is, X ∈ {diphone, triphone, POS}.
Assume p(µx

i ) to be the occurrence frequency of unit µx
i in

a source text corpus. By definition,
∑nx

i=1 p(µx
i ) = 1. Ad-

ditionally, let S denote a sentence set selected from the text
corpus. Accordingly, the coverage of S for X , denoted by
CX

S , is defined as CX
S =

∑nx

i=1 p(µx
i ) × δ(µx

i ), where δ(µx
i )

= 1, if µx
i ∈ S. Otherwise, δ(µx

i ) = 0.

2.2.2. A greedy algorithm
An algorithm for extracting a sentence set from a text corpus
to maximize the unit coverage is described as follows.

Step 1: A score is calculated for each of the currently fo-
cused N∗ sentences, where this focus runs through the entire
text corpus in succession during the loop process. The score
is defined as the increase in coverage that would occur if the
sentence were added to sentence set S. S is none at initiation.

Step 2: The sentence that has the highest score among the
N∗ sentences is extracted according to the following priority,
and it is added to S; the size of S increases by 1 at each loop.

(1) Maximizing C
diphone
S (or simply denoted by Cdi

S ).

(2) Maximizing C
triphone
S (or Ctri

S ), if (1) is satisfied.

(3) Maximizing CPOS
S , if (2) is satisfied.

(4) Maximizing the number of triphone variants at specific
positions: the beginning, end, and a few middle positions of
utterances, if (3) is satisfied. This tactic is intended to con-
sider necessary prosodic effects on the basic units

Step 3: Halt and output S if its size reaches a predefined
value. Otherwise, return to Step 1.

If N∗ sentences cover the entire source text corpus, S
would reach a global optimum solution according to the de-
fined criterion. This is simply because the sentence with the

highest score among the rest of the text corpus could always
be selected through the step-by-step procedure.

2.3. Prompt recording

2.3.1. Controlling time-dependent voice variations

We intend to suppress the time-dependent effects on voice
variations described in [4] during the recording process rather
than correcting them after recording. First, identical audio
equipment is used throughout the recording, and only the vol-
ume of the microphone amplifier is adjusted. Of course, the
layout of the recording studio is also kept the same.

Second, a critical factor is microphone setting, more specif-
ically the distance between the microphone and the speaker’s
mouth. It is known that the low frequency responses of a mi-
crophone with a directive response pattern are boosted due
to the proximity effect when a sound source is set close to
the microphone. Figure 1 shows the frequency responses of
a target microphone (Neumann Microphone, Type TLM 103,
which has a cardioid directional pattern) set in a recording
system with respect to those of a nominative microphone fixed
at an impulse mouth; this measurement was reported else-
where [9]. It is clear from this figure that, when the dis-
tances between the target microphone and the artificial mouth
change from 5 cm to 60 cm in several steps, the boosting
is found in the frequency range of 50-300 Hz. In order to
suppress the proximity effect, the results suggest keeping the
mouth-microphone distances as close to 30 cm as possible
during the recording period. Consequently, the proximity ef-
fect can be limited to 3 dB as shown in Fig. 1.

Finally, a main factor causing voice variability is the phys-
ical and mental conditions of the speaker. While it is diffi-
cult to suppress this kind of effect, many efforts have been
made to minimize the impact of this factor to the record-
ing in voice quality. For example, choosing a speaker with
a good ability to control his/her voice through a careful audi-
tion process; limiting the speech data collected in each record-
ing day; dividing the recording day into several sessions (20-
minute work and 20-minute break, alternately); and having
the speaker listen to several nominative samples so that he/she
can anchor a normal voice for each recording day.

2.3.2. Technique for detecting voice variations

The proposed technique for evaluating the recording is based
on a measure of the minus log-likelihood of long-term power
spectral densities (PSDs) in terms of one mixture Gaussian
N(µ,Σ) modeling the acoustic space of time-dependent voice
variations; µ and Σ indicate a q-dimensional mean and covari-
ance matrix, respectively. Long-term PSDs have been found
to be effective for detecting voice quality variability in large-
scale speech corpora [5] [6]. The PSD of long-term voiced
segments yi, denoted by Pyi(k), can be expressed as follows.

Pyi(k) =
1

‖w‖2M

M∑
m=1

P (m)
yi

(k), k = 0, ...,K − 1, (2)
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Fig. 1. Frequency responses of a target microphone with re-
spect to those of a nominative microphone at different dis-
tances between the microphone and an impulse mouth.

P (m)
yi

(k) =
1
K

K−1∑
n=0

∣∣∣w(n)yi(n)e−
j2πkn

K

∣∣∣2 , (3)

where w is a hamming window, and M is the number of
speech frames extracted from yi. In practice, the judgment
of whether the mth frame of yi is voiced is simply done by
comparing its energy E

(m)
yi with the maximum E

(max)
yi :

E(m)
yi

=

K−1X
n=0

|w(n)yi(n)|2
(

voiced if E
(m)
yi ≥ δE

(max)
yi

unvoiced, otherwise

)
, (4)

where δ indicates a factor and K is FFT size.
A long-term PSD is then converted to a q-order MCEP

(mel-frequency cepstrum) vector, denoted by xi. Thus the
minus log-likelihood of xi to N (µ, Σ) can be expressed as

�(xi) =
ln((2π)qdet(Σ)) + (xi − µ)

′
Σ−1(xi − µ)

2
. (5)

We use one mixture model, rather than multi-mixtures, in or-
der to capture the divergence of the acoustic source of voice
variability, thus revealing relative voice variations.

3. EXPERIMENTAL RESULTS

3.1. Prompt subjects

BTEC and NEWS are the text corpora for analyzing unit statis-
tics and extracting prompt subjects. Table 1 lists the count of
words, sentences, diphone and triphone types for each corpus.
Note that a sentence was filtered out if its word number was
more than 25 in BTEC and not between 10 and 25 in NEWS.

Table 1. Count of basic units in source text corpora.

Corpus #Words #Sentences #Diphone #Triphone

(million) types types

BTEC 3.77 749.5 k 1,472 26,657

NEWS 22.02 4,985.2 k 1,597 40,499

Table 2. Divergence between BTEC and NEWS text corpora.

Divergence POS Monophone Diphone Triphone

KL(BTEC,NEWS) 0.229 0.030 0.153 0.489

Table 3. Unit coverage of prompt subjects.

#Sent. Cdi
S Ctri

S CPOS
S Typedi

S TypetriS

BTEC 5,120 99.99% 99.72% 100% 99.93% 73.1%

NEWS 3,100 99.99% 99.33% 100% 92.84% 49.0%

Table 4. Results for criteria of guiding subject selection.

#Sent. chosen by C
diphone
S C

triphone
S CPOS

S Others

BTEC (5,120) 8.95% 90.6% 0.31% 0.08%

NEWS (3,100) 13.0% 86.5% 0.35% 0.16%

Table 2 shows the divergence calculated by Eq. (1) be-
tween BTEC and NEWS, while considering the distributions
of POS, monophones, diphones, and triphones. It shows that
there exist statistical differences in unit coverage between news-
writing and conversational text corpora.

Two subject sets are independently extracted from the two
text corpora using the greedy algorithm: 5,120 sentences (52
k words, average 10.5 words per sentence) from BTEC and
3,100 sentences (50 k words, average 16.3 words per sen-
tence) from NEWS. Table 3 outlines the unit coverage of the
subject sets. For example, the 3,100-sentence set involves
92.8% of existing diphone types (Typedi

S in Table 3) and 49.0%

of existing triphone types (TypetriS ). In addition, 22.2% of
sentences end with a question mark from BTEC and 2.2%
from NEWS. The least phoneme is /zh/ (139 instances ex-
tracted from BTEC and 184 samples from NEWS).

Figure 2 shows the coverage as a function of set sizes in
the number of sentences in the sets. The first 350 sentences
from BTEC are selected with N∗ taking the total number of
sentences (i.e., 749.5 k) at each loop. This is, however, ex-
tremely time-consuming. Then N∗ = 2,000 in the rest of this
experiment. It can be seen that there are slightly different in-
crease rates for the triphone coverage around point 350.

Table 4 illustrates how many sentences are selected by

maximizing C
diphone
S , C

triphone
S , CPOS

S , and the other (tri-
phone variants at specific positions). It is clear that the criteria

for maximizing C
diphone
S and C

triphone
S play a critical role

in governing the selection, given a small corpus size.
The prompt subjects are recorded in a sound-proofed room

at ATR by an American male native, who won against other
three natives in a well-designed audition. The recording pe-
riod lasted more than one month, including 18 recording days.
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Fig. 2. Coverage increases with increasing subject set sizes.

3.2. Evaluating the recording

Our evaluation focused on time-dependent voice variations in
the recording. Part of the speech corpus is provided for those
researchers with Blizzard Challenge 2006 [10]. Therefore, an
open evaluation on the appropriateness of the speech corpus
for constructing TTS systems will be coming soon.

To train a robust model N(µ,Σ), we used the Japanese
(male), Chinese (female) and English (male) speech corpora
collected at ATR (around 200 recording days in total) to create
the acoustic space of the long-term PSDs. More specifically, a
long-term PSD was calculated from 3-minute voiced speech
segments (48-kHz sampling) with a 10-ms frame rate; K =
1024 for FFT analysis; δ = 5×10−6 for detecting voiced
frames; q = 40; and a = 0.5 for MCEP conversion. All of
the long-term PSDs were then used for estimating both model
parameters µ and Σ to model the “complete” acoustic space.

Figure 3 shows the scattered likelihood values of long-
term PSDs for the recording (crosses) and those for a Chinese
speech corpus as a reference (circles). The lower the likeli-
hood values, the better the performance. First, the measure
in Eq. (5) is vital for revealing the potential voice variations.
This is demonstrated by the clear evidence of existing time-
dependent voice variations in the Chinese speech corpus, such
as the channel effects analyzed elsewhere [7]. It is assumed
that there are slight time-dependent voice variations in the
recording. However, there are also isolated noticeable effects
as indicated by such likelihood values that suddenly deviate
from the slightly upward trend, for example, the crosses above
the line – 45 on the y-axis. This finding may be related to the
speaker’s temporary physical condition, which was noted in
the report on the field recording.

4. CONCLUSION

This paper presented a method for generating prompt subjects
used in constructing an English speech corpus. Furthermore,
it discussed the recording of prompt subjects while control-
ling undesirable voice variability. One of the criteria used in
the prompt design is to exhibit good diphone and triphone
coverage with the given amount of text. Experimental results
indicate that the selection algorithm is effective in raising the
coverage of all intended units. Also, the time-dependent voice
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Fig. 3. Scattered likelihood values of long-term PSDs in the
English recording (mean: – 55.63) and a Chinese speech cor-
pus (mean: – 49.06) both using the same recording system.

quality variability in the recording is controllable by carefully
setting such critical factors as the proximity effect of the mi-
crophone, the layout of the recording studio, and the speaker.
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