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ABSTRACT

The quality of corpus-based text-to-speech systems depends
on the accuracy of the unit selection process, which in turn
relies on the cost function definition. This function should
map the user perceptual preference when selecting synthesis
units, which is a very difficult task. This paper continues our
previous work on fusing the human judgements with the cost
function by means of interactive weight tuning. The appli-
cation of active interactive genetics algorithms mitigates user
fatigue by improving user consistency. As a result, the ob-
tained weights generate more natural synthetic speech when
compared to previous objective and subjective proposals.

1. INTRODUCTION

The aim of any Text-to-Speech (TTS) system is the genera-
tion of synthetic speech from text. The performance of such
systems is evaluated by human beings based on the perceived
speech quality. Hence, it is essential to somehow embed this
subjective criterion into the tuning process of the TTS system
for achieving highly natural synthetic speech. The corpus-
based or unit selection TTS approach is one of the state-of-
the-art techniques that try to reach this aim [1]. This method
generates the synthetic speech signal by means of the selec-
tion and concatenation of recorded speech units. The tuning
of the unit selection module is one of the most important pro-
cesses in getting high quality synthetic speech [2]. The selec-
tion process is driven by a cost function [3], which is typically
computed as the combination of several weighted sub-costs.
A key issue involves the accurate tuning of these weights,
that is, mapping the user subjective preferences among can-
didate units—a complicated task [3, 4]. Several approaches
have been proposed for weight training, distinguishing be-
tween i) hand-tuning [5] and ii) machine-driven—purely ob-
jective methods [3, 6, 7] or perceptually optimized techniques
[4, 8, 9].
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In a previous work, we introduced genetic algorithms (GA)
for tackling the weight tuning problem [10]. This technique
overcame the restrictions of classic approaches [3, 6], attain-
ing better results with a feasible computational effort. Nev-
ertheless, this approach, as all the previous techniques, needs
to face a key challenge: the reliable estimation of the subjec-
tive perception of the speech attributes (i.e. it is very difficult
to define a solid perception mapping function). Thus, it is
necessary to actually incorporate user preferences for accu-
rately tuning the weights of the cost function. As a first step,
we applied a simple interactive genetic algorithm (iGA) for
weight tuning, allowing an actual perception-guided adjust-
ment [11]. However, the conducted experiments evidenced
two main problems: the tediousness of the process (user fa-
tigue) and the complexity of maintaining a stable compari-
son criterion throughout the whole process (user consistency),
which are weaknesses related to iGAs. Later, active iGAs
(aiGAs) introduced several advances for combating the user
fatigue [12], showing that learning from user interaction and
exploiting the learned knowledge to guide the process of col-
lecting user evaluations can greatly reduce the number of eval-
uations required to achieve high-quality solutions.

This paper focuses on interactive weight tuning processes
and how aiGAs can reduce user fatigue by boosting user con-
sistency. Section 2 describes the main features of aiGAs and
their application to weight tuning for corpus-based TTS syn-
thesis. Section 3 introduces a new consistency measure re-
lated to the active iGA paradigm, which allows controlling the
user robustness during the tournaments. Section 4 describes
the achieved improvements on user consistency and synthetic
speech quality, using efficient subjective-based tuning tech-
niques. Finally, the conclusions are presented in section 5.

2. SUBJECTIVE WEIGHT TUNING

The purpose of this section is twofold. First, it reviews some
related research topics in subjective weight tuning, and sec-
ond, it focuses on the surrogate model of the synthetic sub-
jective fitness proposed in [12], as the main pillar of aiGAs.
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Table 1. Algorithmic description of the aiGA model [12], where h is the
height of the tournaments tree and r̂(v) is the estimated rank for vertex v.

1. Create an empty directed graph G =< V, E >.
2. Create 2h random initial solutions (V set).
3. Create the hierarchical tournament set T using the

available solutions in V .
4. Present the tournaments in T to the user and update the partial

ordering in E .
5. Estimate r̂(v) for each v ∈ V .
6. Train the surrogate ε-SVM surrogate synthetic fitness based on G

and r̂(v).
7. Optimize the ε-SVM synthetic fitness using the compact GA.
8. Create a S′ set with 2h−1 new different solutions, where

V
⋂

V ′ = ∅, sampling out of the probabilistic model
evolved by cGA.

9. Create hierarchical tournament set T ′ with 2h − 1 tournaments
using 2h−1 solutions in S and 2h−1 solutions in V ′.

10. V ← V ∪ V ′
11. T ← T ∪ T ′
12. Go to 4 while not converged.

Our previous work proved the usefulness of using GAs (as
an objective method) and iGAs (as a subjective method) for
tackling the weight tuning problem [10, 11], as iGAs allow
the fusion of human and computer efforts for problem solv-
ing [13, 14]. However, putting the evaluation process into the
hands of a user sets up a different scenario when compared
to normal optimization tasks [14]. In this sense, we realized
that further research was needed to improve the quality of the
achieved synthesis and to combat user fatigue. In the quest to
address these issues, aiGAs rely on learning from the inter-
action with the user and anticipate what hypotheses the user
may be interested via educated guesses, guiding the breading
process of new solutions (see table 1). Further details may be
found elsewhere [12].

The key element of an aiGA is its synthetic fitness func-
tion. The minimal scenario for collecting meaningful domain-
independent information from the user is provided by a binary
tournament scheme (s = 2) [15]. User evaluations introduce
a partial order among the solutions presented so far—in this
paper, the synthetic representation of the weights configura-
tions. Durant et al.[16] also attempted to ensemble global
rankings based on pair-wise comparisons. However, they never
explored the model building over the obtained graph to reduce
user fatigue by means of educated guesses of the user prefer-
ences, as later explained. A partial order can be made explicit
by using a partial-ordering graph ensemble G =< V, E >—
as firstly suggested in [12]. A vertex in V represents the solu-
tions presented to the user, whereas the edges in E represent
the partial-ordering evaluations provided by the user. Given
two solutions {s1, s2} ∈ V the user is able to provide three
possible outcomes: i) s1 > s2, ii) s1 < s2, and iii) s1 = s2—
or equal/don’t know/don’t care. Such a graph G can be trans-
formed into a normalized graph G′ containing only bigger
than relations [12]. A global ordering measure may be com-
puted using a heuristic based on two dominance measures, δ
and φ, inspired by multiobjective optimization [17, 18]. Let

δ(v) be the number of different nodes present on the paths de-
parting from vertex v, and φ(v) the number of different nodes
present on the paths arriving to v. The estimated fitness of a
given solution v may be computed as f̂(v) = δ(v)−φ(v). In-
tuitively, the more solutions a vertex v dominates (is greater
than), the greater the fitness. Otherwise, the more solutions
dominate (are greater than) a solution v, the smaller the fit-
ness. The final global estimated ranking r̂(v) is obtained sort-
ing the vertex v ∈ V by f̂(v). This global estimate is used
to train a ε-SVM for creating the synthetic surrogate fitness
[12]. By optimizing such a synthetic fitness we can obtain
educated guesses about the user preferences. In this paper,
the optimization step is conducted by a continuous PBIL [19],
instead of using compact GA [12], due to the real-valued rep-
resentation of the weight tuning problem.

3. MEASURING USER CONSISTENCY

Given a normalized partial-ordering graph G′, if a vertex v
appears more than once in a path of δ(v) or φ(v), then a cycle
exists. If such property exists, it represents an inconsistency
in the user evaluations. Thus, due to the greater than rela-
tions, the consistency of the user evaluations can be identified.
This property is the basis of the consistency metric proposed
in this paper. In order to compute such a measure we need two
components: i) cycle detection capabilities for a given graph
G′ at time t (G′t), and ii) an heuristic to quantify how much
inconsistency the detected cycle is introducing.

Let’s χ (G′t) be the set of vertex that are part of at least
one cycle in G′t. Then, the consistency of a user at time t,
κ (G′t, ω) is defined as follows

κ
(G′t, ω

)
= 1 −

⎛
⎝ 1
|V ′t| ·

∑
v∈χ(G′t)

ωv

⎞
⎠

α

(1)

where |V ′t| is the number of vertex in G′ at time t, ωv the
weight of vertex v (not to be confused with the cost function
weights), χ (G′t) the vertexes in the cycles detected in G′t,
and α a global scaling factor bigger or equal than 1. Unless
noted otherwise, ωv = 1,∀v ∈ V ′t and α = 1.

The κ measure allows controlling the user consistency
during the evolutionary process, avoiding the explicit inclu-
sion of control points (i.e. A-B vs. B-A comparisons) along
the tournaments. Hence, it’s an implicit method for speeding
up the weight tuning process, helping to increase user consis-
tency. In this paper, the user consistency is measured at time
t = tf—or final time. However, measuring user consistency
accurately would require an average integration of the con-
sistency measure along the interactive run. This approach is
postponed until further research.

4. EXPERIMENTS

The main goals of the experiments were to explore: i) the
consistency of user evaluations, ii) the implications of using
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Table 2. Consistency κ plus the absolute enhancement percentage —
denoted as (∆%)— obtained by aiGA.

simple iGA Novice Knowledgeable Expert
Phrase User User User
“De la seva selva” 0.944 0.855 0.784
“Fusta de Birmània” 0.857 0.769 0.911
“I els han venut” 0.894 0.867 0.731
“Grans extensions” 0.942 0.800 1

active iGA Novice Knowledgeable Expert
Phrase User (∆%) User (∆%) User (∆%)
“De la seva selva” 1 (5.89) 0.892 (4.30) 1 (27.50)
“Fusta de Birmània” 1 (16.67) 1 (30.01) 1 (9.81)
“I els han venut” 1 (11.91) 1 (15.00) 0.948 (29.76)
“Grans extensions” 1 (6.12) 1 (25.00) 1 (0.00)
Avg. (∆%) 1 (10.15) 0.973 (18.58) 0.987 (16.77)

aiGAs in weight tuning for TTS synthesis, and iii) the perfor-
mance of the proposal in terms of perceptual experiments.

We repeated our early experimentation done using the “Sin-
Evo” platform [11], but replacing the simple iGA with the
proposed active iGA. The consistency of user evaluations when
using both interactive methods was compared by computing

κ
(
G′tf , ω

)
. Then, the synthetic phrases obtained by the tuned

weight configurations were presented to naive users. The pur-
pose is to evaluate the synthetic speech quality obtained by
the different weight adjustments, validating the impact of the
introduced efficient subjective tuning approach, as opposed to
previous objective and subjective proposals.

4.1. Objective analysis

First, we measured user consistency via κ (G′t, ω) along the
evolutionary process presented in our earlier work [11], which
used a simple iGA for subjective weight tuning. As shown in
upper portion of table 2, only the expert user was consistent
all the time in a particular experiment. Thus, regardless of the
user profile–novice, knowledgeable, or expert—, all the users
had troubles maintaining a consistent criterion throughout the
tournaments when using a simple iGA (see figure 1(a)). This
is basically due to the large number of needful evaluations
before converging and the subtle perceptual variations among
candidates. Another relevant discovery was that inconsisten-
cies show early on the run of the simple iGA. On average,
users, despite of their profile, tend to contradict themselves
around tournament 14 across the runs, with a contradiction of
2.83 times per run. Such inconsistencies may be regarded as
a noisy subjective fitness function and, hence, be responsible
for increasing the number of tournaments required to get a
high-quality solution [20]—relieving user fatigue.

Second, this analysis was repeated replacing the simple
iGA in “Sin-Evo” platform by the proposed aiGA. The results
obtained using aiGAs boosted the consistency of the criteria
employed by the user, as only two out of the twelve experi-

ments ended in an inconsistent status —κ
(
G′tf , ω

)
< 1 (see

the lower portion of table 2). The active selection of tourna-
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Fig. 1. Evolution of the user consistency measured using κ
(
G′t, ω

)
for

the Catalan phrase “Fusta de Birmània”. Figures compare the consistency
of users when using simple iGA or active iGA.

ments based on the partial-ordering graph G′ helped the user
to get back on the track of consistency—see figure 1(b). An-
other effect of using aiGAs was to drastically cut the number
of evaluations required from the user, in a successful effort
to combat user fatigue [12]. No special efforts were done to
adapt the aiGA model to this particular problem. However, as
figure 1 shows, an automatic reduction on the number of re-
quired user evaluations was collected. On average, the usage
of an off-the-shelf aiGA slashed in half the number of eval-
uations required to tune weights for the considered phrases,
providing a minimum speedup of 2.

4.2. Subjective evaluation

Finally, we evaluated the acceptance of the synthetic phrases
generated from four different weight tuning schemes: aiGA
and simple iGA [11]—based on subjective criteria—or Mul-
tilinear Regression (MLR) [3] and GA [10]—based on objec-
tive measures. The considered cost function [10] takes into
account six different sub-costs at diphone level: mean pitch,
mean energy and duration target costs, plus local pitch, lo-
cal energy and MFCC concatenation costs. After conducting
the interactive weight tuning stage described in the previous
experiment, each user—novice, knowledgeable and expert—,
although being consistent, converged to different weight con-
figurations. For this reason, these configurations needed to
undergo a perceptual validation stage. Ten different users—
not involved whatsoever in the tuning process—were asked
to select the best aiGA weight configuration among the can-
didates. The configurations proposed by the expert user were
clearly preferred among the other profiles but no one was dis-
carded completely (44% for the expert vs.27% for the knowl-
edgeable and 29% for the novice users).

Subsequently, the winning aiGA (waiGA) weight config-
uration was then compared to the ones obtained by iGA, MLR
and GA methods, following a perceptual test. Each subjec-
tive test lasted around 15-20 min per user. Figure 2 shows
that in all phrases more than a 50% of the users always pre-

I  867



Fig. 2. User preferences among differents methods for cost function weight

tuning. Regardless of the phrase analyzed, more than a 50% of the users

preferred the synthesis produced by the winning weights obtained by aiGA.

ferred the synthesis produced by the weights obtained using
the waiGA. These results represent first empirical evidence
on the importance of pursuing such efficient subjective tun-
ing methods. However, a deeper analysis of these results
reveals that the greater the difficulty of choosing among the
aiGA candidates (number of turns until decision), the lower
the degree of acceptance of the waiGA solutions among par-
ticipants. The smaller the difference among candidates, the
harder the problem—a well-known result of the GA literature
[21]. Thus, we believe that clustering units may lead to better
agreement by helping the evaluators to focus the comparison
on particular signal differences [11], instead of conducting
global weight tuning.

5. CONCLUSIONS

This paper has continued our work of fusing the human judge-
ment and the weight tuning for corpus-based TTS synthe-
sis. The paper combined a state-of-the-art TTS technique
and interactive optimization via active interactive genetic al-
gorithms. The use of aiGAs allowed us to evaluate the consis-
tency of user evaluations thanks to partial-ordering graphs and
a newly proposed metric. Results shows that aiGAs slashed
in half the number of evaluations required to achieve efficient
subjectively tuned weights, reducing user fatigue during the
tuning process. Moreover, the aiGAs provided better user
guidance, drastically boosting the user consistency along the
tuning process. The experiments also allowed us to provide
sound evidences that efficient subjective weights tuning pro-
vide —when compared to previous approaches—a better syn-
thesis acceptance when presented to users.
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[10] F. Alı́as and X. Llorà, “Evolutionary weight tuning based on di-
phone pairs for unit selection speech synthesis,” in Proceedings of
EuroSpeech, Geneve, Switzerland, 2003, vol. 2, pp. 1333–1336.
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