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ABSTRACT

In previous works (see for instance [1]) we introduced dif-
ferent duration control methods in speech synthesis. The most
outstanding approach is to control the grapheme to phoneme
conversion (and thus indirectly control the speaking rate) by
selecting (reduced) pronunciation variants according to a pro-
nunciation variant sequence model.

Listeners would only accept long synthesized utterances
if the listening effort is nearly the same as the one when lis-
tening to natural speech. To evaluate the quality of the variant
synthesis compared to the canonical one (as the state-of-the-
art system), we performed a listening test with two different
synthesis systems. The variant synthesis applying a pronun-
ciation variant sequence model achieved a significant lower
listening effort and a higher overall rate (MOS) compared to
the canonical synthesis.

We also show that the listening effort can act as a quality
parameter for a speech sample. The rating for the listening
effort is correlated with the rating of the naturalness and in-
telligibility of synthesized speech sample.

1. INTRODUCTION AND MOTIVATION

Jurafski et al. showed in [2] and [3] that the local speaking
rate of a word in an utterance is correlated with the language
model probability of that word. Probable words are often pro-
nounced faster and less accurately than less probable ones.

Based on these results a language model (LM) driven
speaking rate control was integrated into our TTS system
DRESS [4] as a first approach. In a second development
stage we generated the target word durations predicted by the
language model by selecting appropriate pronunciation vari-
ants with different degree of reduction from a variant lexicon.
This was done since a greater speaking rate is rather produced
by reduced pronunciations instead of a faster articulation of
canonical ones. Thus, the speaking rate is still indirectly con-
trolled by controlling the grapheme to phoneme conversion
using the language model.

After we had identified the improper word boundary pro-
nunciations as one reason for the occasionally bad listening
impression, we involved knowledge about how well two sub-

sequent variants fit together. Therefore we investigated a pro-
nunciation variant sequence model (PVSM) for the selection
of the pronunciation variants in a third development stage.

In different pair comparison tests all development stages
brought an improvement of the naturalness of the synthesized
utterances. The most outstanding approach is the indirect
control of the speaking rate by selecting (reduced) pronunci-
ation variants according to a PVSM. It showed that 73.7 % of
the listeners rated the generated utterances as more colloquial
and 54.4 % as more natural [1].

After having summarized the synthesis approach applying
a PVSM in Section 2, we present the results (Section 3.2) of
a new large listening test (Section 3.1) focused on measuring
different parameters of synthesized canonical speech and of
synthesized speech using pronunciation variants. We discuss
the results (Section 3.2) and analyze the impact on different
parameters (Section 3.3).

2. SPONTANEOUS SPEECH SYNTHESIS APPLYING
A PRONUNCIATION VARIANT SEQUENCE MODEL

In this section we give a brief overview of the synthesis apply-
ing a pronunciation variant sequence model (PVSM). A more
detailed description can be found in [1].

2.1. Database

We used three main databases: (I) a general language model,
(II) a pronunciation lexicon, and (III) a pronunciation variant
sequence model.

The general language model (I) as well as the PVSM (III)
are interpolated n-multi-gram models with different interpo-
lation weights and training sets. The probability P (w) of a
particular word w (e.g. a certain variant) in an utterance in
relation to the preceding and following words is estimated by
interpolating the n-grams of different orders [5].

For (I) the training data were selected from the German
Verbmobil corpus and contain a total of 177,625 words with
a vocabulary of 4,831 words. In our experiments the model
order ranges from −3 to 3 (negative orders denote reverse n-
grams).
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The pronunciation lexicon (II) was automatically gener-
ated with the help of our pronunciation learning technique
described in [6, 7] using the manually labeled read speech cor-
pus German PhonDatII. It consists of a total of 7,310 words
with a vocabulary size of 192. The resulting dictionary was
manually optimized by removing obviously wrong pronunci-
ations and unusual variants. The average number of pronun-
ciation variants per word in the final lexicon is 2.8. This final
pronunciation lexicon was re-aligned to the speech corpus.
From the aligned variant sequence a variant n-multi-gram (the
PVSM) (III) was built. The model order ranges from 0 to 2.

2.2. Algorithm

When pronunciation variants for synthesis are used, it is a
major task to model the word boundary effects (elisions and
assimilations). Former experiments with variant selection
showed that the combination of improper pronunciation vari-
ant sequences yields a worse listening impression [1].

The variant selection algorithm selects an appropriate se-
quence of pronunciation forms. On the one hand it should
match the target durations well and on the other hand it should
form a probable sequence according to the pronunciation vari-
ant sequence model (PVSM).

To find an optimal pronunciation variant sequence we
used the following algorithm:

• Calculate language model probability.

• Calculate the initial local speaking rate in terms of an
initial relative word duration from the word probability
estimated by the language model.

• Process accent information. Accented syllables serve
as anchors in speech production. To preserve the accent
property of a syllable and in this way the accent struc-
ture of the whole utterance, do not shorten accented
syllables, even if the language model suggests it.

• Calculate target duration from the relative duration (a
relative duration of 1 corresponds to the canonical vari-
ant).

• Build a stochastic Markov graph (SMG, [8]) for each
utterance to be synthesized (see Figure 1). Each node of
that graph stands for a single pronunciation and links to
a unidimensional Gaussian probability density function
describing the duration of the variant. The edges of the
graph carry transition weights taken from the sequence
model.

• Search the best path through that graph and select the
respective variant lying on that way.

2.3. Selection of Pronunciation Variants

The selection of the pronunciation variants of a word se-
quence according to the variant sequence model can be ex-
pressed as a stochastic Markov graph. An n-gram of 2nd-
order implies an SMG of first order. Each node of that graph

stands for a single pronunciation and links to a unidimen-
sional Gaussian probability density function describing the
duration of the variant. Each edge stands for the transition
from the pronunciation variant As to the variant Ae. Figure 1
shows an example of a pronunciation SMG for the German
phrase { morgens ◦ zwischen ◦ acht ◦ und ◦ neun }. The
edges are weighted by an interpolation of zerograms, uni-
grams and bigrams of pronunciation variants:

ν = ln (f2P (Ae|As) + f1P (Ae) + f0P0) (1)

where fn denotes the according n-gram weighting factor, and
P0 denotes the zerogram probability.

Of course, the usage of higher order SMGs is also possi-
ble. However, gathering statistically sound n-grams of pro-
nunciation forms would require a huge database.

Given the desired absolute lengths dtar(wi) for the word
wi in a sentence or phrase to be synthesized, the optimal se-
quence of pronunciation variants can be found by searching
the best path through the SMG-model, which is given by:

A∗ = arg max
A∈G

∑

Ai∈A
[νi(Ai|Ai−1) + γ ln p(dtar(wi)|Ni)] (2)

where νi(Ai|Ai−1) is the edge weight of the transition
Ai−1Ai and p(dtar(wi)|Ni) stands for the probability density
of the desired word length dtar(wi) in the duration statistics
of a pronunciation variant Ai. By including the scaling factor
γ it is possible to adjust the preference for an exact match of
the required word durations (γ < 1) or for the selection of
probable variant sequences (γ > 1). In our experiments we
set γ to 0.85. For more details please see [1].
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Fig. 1. Stochastic Markov Graph (SMG) representing a net-
work of pronunciation variants for the German phrase “mor-
gens zwischen acht und neun” (between eight and nine in the
morning). Nodes represent word pronunciations, edges carry
weights obtained from the pronunciation variant sequence
model. The bold path denotes the pronunciations selected us-
ing the variant sequence model. The example shows the cor-
rect consideration of word boundary effects (e.g. elision of /t/
and assimilation of /s/ between the first two words). For com-
parison, the dashed edges show the path chosen considering
only target durations [1].
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3. EXPERIMENTS FOR MEASURING THE
LISTENING EFFORT

By measurement of the listening effort it is possible to yield
a quality parameter for the rating of naturalness and intelligi-
bility of synthesized speech.

3.1. Design and performance of the listening test

The listening effort of longer speech samples should be mea-
sured only because shorter samples (like the one often used
in pair comparison tests) do not attract the attention of the
listener long enough.

To minimize the influence of system specific features
on the listener we used two different synthesis systems:
(A) DRESS [4] and (B) MBROLA [9]. However, the word
target duration was calculated independently from the syn-
thesis system. In case of system (B) the accent structure was
taken from the DRESS-System (A) and (B) was only used to
convert the phonemes into sound.

A second reason for using two different systems was the
different number of diphones used in the system databases.
Normally the diphones are stored according to the canonical
pronunciation. By applying variants to the synthesis process,
phoneme combinations are observed, which would not appear
in the canonical case. Missing a diphone in the synthesis pro-
cess produces in most of the cases a bad listening impression.

For both synthesis systems (A) and (B) we generated a
listening sample with canonical synthesis and another one by
applying the pronunciation variant sequence model (PVSM).
Since the PhonDatII corpus contains utterances from the do-
main “travel information” with a limited vocabulary size,
mostly short sentences with a special information were com-
bined with a 0.8 seconds pause in between. The final four
synthesized speech samples were around 60 seconds long.

The listening test for measuring the listening effort was
performed with 37 participants (7 were experienced listeners).
In addition to the main parameter listening effort, the three
categories: intelligible, natural and colloquial speech should
also be rated at an equidistant scale from 0 (less) to 1 (more).
Furthermore, the ratings of the speech parameters: sentence
melody, speech rhythm, emphasis, speech rate, and pronun-
ciation were asked for. Therefore, a continuous bipolar scale
from −5 to 5 was used, whereby the opposite limits are situ-
ated at both ends.

3.2. Results and Discussion

Table 1 shows the results (as arithmetic means of the scores)
of the listening test. It can be seen that in all categories the
variant synthesis algorithm with PVSM yields better (or at
least nearly the same) results than the pure canonical synthe-
sis. Especially the listening effort for both systems could be
reduced and the overall impression (MOS) could be improved
(best at the MBROLA System). Similar to the pair compari-
son test in [1], the PVSM-synthesis was rated as much more

Table 1. Results (arithmetic means) for the listening tests
to measure the listening effort using two different synthesis
systems (A) and (B).
In that table “can.” stands for the standard synthesis algo-
rithm and “PVSM” stands for the synthesis with variant se-
lection with a pronunciation variant sequence model.

(A) DRESS (B) MBROLA
can. PVSM can. PVSM

listening effort 2.35 2.32 2.43 2.30
intelligible 0.63 0.56 0.59 0.59
natural 0.39 0.42 0.42 0.44
colloquial 0.34 0.49 0.36 0.48
MOS 3.03 3.05 2.92 3.19
sentence melody 0.86 −0.05 0.51 0.36
speech rhythm −0.31 0.48 −0.30 −0.04
emphasis 0.92 0.33 1.12 0.80
speech rate −0.01 0.28 −0.14 0.24
pronunciation 0.53 0.53 0.17 0.16

The values are:
listening effort: 1 not strenuous . . . 5 very strenuous;
intelligible, natural,
colloquial:

0 less . . . 1 more;

overall impression (MOS): 1 bad . . . 5 very good;
sentence melody: −5 not present . . . 5 too intrusive;
speech rhythm: −5 stagnant . . . 5 fluent;
emphasis: −5 monotonous . . . 5 wrong emphasized;
speech rate: −5 too slow . . . 5 too fast;
pronunciation: −5 very indistinct . . . 5 very distinct.

colloquial but only slightly more natural. In the category in-
telligibility the canonical synthesis is slightly preferred.

The following conclusions based on the results should be
pointed out:

• The results confirm the assumption from [1] that for
the special domain “travel information” a canonical re-
alization is more adequate. However, it could not be
confirmed that the general rating decreases. In oppo-
site, for these longer speech samples there is a rating in
favor of the PVSM-syntheses.

• Similar to the pair comparison tests from [1] the cate-
gory colloquial speech gets better rating in case of the
PVSM-synthesis. The ratings in the categories natu-
ralness and intelligibility are relatively balanced. The
latter achieved worse results in the pair comparison test
with PVSM-synthesis. The better ratings here could be
due to a familiarization effect of the listeners.

• The other speech parameters also show a favorable rat-
ing in case of the PVSM-syntheses. For instance, the
speech rhythm is more fluent and the speech rate is
higher which make synthetic speech not so tedious.
Both should have been achieved by introducing vari-
ants to synthesis.

• The rating of the speech parameter pronunciation is re-
markable, because it yields nearly the same scores for
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both synthesis algorithms. It seems that the introduc-
tion of variants (and less accurately pronounced, trans-
formed, and deleted phonemes) is not bothering the lis-
teners if the sentence is longer.

• Only the sentence intonation (as a measure of the vari-
ation in the fundamental frequency) and the parameter
emphasis (as a measure of the stressing of syllables and
words) were rated in favor of the canonical synthesis.
Applying variants to the synthesis, the sentence intona-
tion is softened and the emphasis is too monotonous.
Both are probably due to a wrong prosodic struc-
ture in the case of the PVSM-synthesis. Even though
the prosody matches the canonical synthesis well, the
one-to-one adaptation to the PVSM-synthesis yields
a speech sample with an incorrect prosodic structure.
Therefore, not only the grapheme to phoneme conver-
sion has to be improved, but also the prosodic genera-
tion, which has not been considered up to now.

3.3. Impact factors on the listening effort

In order to measure the impact on the single ratings, a simple
correlation analysis was performed. Therefore, the Spearman
rank order correlation coefficient between the measured lis-
tening effort respectively MOS and the rated categories (intel-
ligibility, naturalness, colloquial speech) as well as the speech
parameters (sentence intonation, speech rhythm, emphasis,
speech rate, pronunciation) were calculated.

The results of the correlation analysis are shown in Ta-
ble 2. As it can be seen, the listening effort and the MOS
depend strongly on the ratings in the categories intelligibility
and naturalness. The dependencies show that a better intel-
ligibility or naturalness lead to a smaller listening effort or
a higher MOS. It should be mentioned that for the PVSM-
synthesis the rating in the category colloquial speech has also
a slight impact. At a more colloquial speech the listening ef-
fort decreases and the MOS score increases. Therefore, the
listening effort can be seen as a parameter which ranks the
overall quality of a speech sample as MOS does.

A strong dependency can also be identified between the
listening effort respectively MOS and the speech parameters:
pronunciation and speech rhythm, and a slight dependency
on the speech rate. A worse pronunciation, a stagnant speech
rhythm or a too slow speech rate lead to a higher listening
effort or a smaller MOS.

4. CONCLUSION

The results show that the synthesis applying a variant selec-
tion with a pronunciation variant sequence model is capable
of making synthetic speech sound more “spontaneous” and
reduces the listening effort for the longer utterances. The pro-
posed algorithm selects a variant for a given word by consid-
ering the variant selection for the surrounding words.

The measured parameter listing effort is suitable for eval-
uation of the overall performance of a (longer) synthesized

utterance.
The use of pronunciation variants is just one observable

effect in spontaneous speech. To make synthetic speech really
spontaneous further effects like hesitations have to be mod-
eled too.

Table 2. Correlation coefficients for the results of the listen-
ing test for measuring the listening effort.
The abbreviations stand for: can.: standard canonical syn-
thesis and PVSM: Synthesis with variant selection through
pronunciation variant sequence model

Parameter: listening effort MOS
can. AVFM can. AVFM

intelligible −0.63 −0.80 0.61 0.63
natural −0.22 −0.42 0.66 0.70
colloquial 0.06 −0.16 0.13 0.29
pronunciation −0.53 −0.58 0.43 0.45
emphasis 0.02 0.00 −0.28 −0.21
sentence intonation −0.12 −0.01 −0.13 0.01
speech rhythm −0.36 −0.62 0.52 0.62
speech rate 0.09 0.12 −0.13 −0.18
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