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ABSTRACT
In this paper we focus on new options for the efficient quantization

of statistically normalized target vectors at low bitrates. This problem
is fundamental to many low-rate speech and audio coder designs. Here
many such coders follow a general principle of taking a structured
speech or audio signal, applying a process of redundancy removal and
then quantizing each of the resulting statistically normalized targets to
a relevant distortion level.

We look at this latter problem when some of these targets are to
be quantized at very low bitrates (≤ 1 bit/target-scalar). The approach
we take is to efficiently communicate a target-adaptive pattern of un-
equal bit-assignments (noise allocations) across each target. This can
increase performance over an approach that has a constant noise allo-
cation even when target vectors consist of independent and identically
distributed (i.i.d.) scalars. We extend these schemes to multi-option
schemes allowing further options to adapt and improve performance.

1. INTRODUCTION

In this paper we are interested in the problem of quantizing statisti-
cally normalized target vectors at very low bitrates. This problem is of
underlying interest to many low-rate speech and audio coder designs.
Here many such coder designs follow the general principle of taking
an input signal frame “s” and first applying a process of redundancy
removal and possibly a joint or subsequent process for irrelevancy re-
moval. In the final coding stage the encoder quantizes the resulting
statistically normalized targets “x”, each with a given number of bits
and/or to a given distortion level. See for example the general illustra-
tion of the process in [1].

For good reasons speech and audio coding research has tended to
be dominated by advancements in the former processes of redundancy
and irrelevancy removal. With these advancements well-known clas-
sic quantization techniques [2] are often used to quantize the resulting
statistically normalized targets. However, to further improve coder
performance it is becoming increasingly important to revisit the latter
process and to possibly define new quantization techniques [3][4]. Of
particular interest are techniques that optimize not only objective per-
formance, such as minimizing the mean square error (MSE) as done
with many classic techniques, but techniques which also have impor-
tant practical attributes such as an inherent match to perceptual cod-
ing principles, low complexity, the ability to control the allocation of
noise, etc.

For example in [3] an approach is presented to quantize Modified
Discrete Cosine Transform (MDCT) coefficients which exploits both
simplifications to high-dimensional vector quantizers (VQs) and the
statistical nature of such coefficients as seen with audio. In [4] trade-
offs in the relative quantization of phase and magnitude in Fourier rep-
resentations are explored thus addressing a link to auditory perception.

In this paper we focus on a different approach and problem. The
approach can be used to quantize frequency domain coefficients (as

in the prior work just mentioned) and/or residuals in linear predictive
coders. However the problem we will address is the case in which our
target vectors of interest “x” have little or no structure. The assump-
tion is that most if not all of the non-i.i.d. properties of “s”have been
already exploited and removed by early redundancy removal steps (e.g.
by an analysis stage in linear prediction and/or gain normalization of
transform coefficients in subbands). In the results of this paper we as-
sume an extreme case where x consists of i.i.d. real scalars, though our
earlier work does look at designs for speech and audio that relax this
assumption1.

Our approach is to divide targets into sub-vectors and to use and
communicate (to the decoder) an explicit signal-adaptive pattern of
unequal bit-assignments (noise-allocations) to these sub-vectors. The
use of an explicit adaptive allocation is an interesting feature of our
approach that does distinguish it from other approaches. Unlike many
high-dimensional VQ approaches where bits are essentially assigned
to the entire vector in a single unit, or assigned in a specific non-
adaptive pattern, the use of an explicit signal-adaptive bit-allocation
to sub-vectors allows the encoder and decoder to control and know the
noise-allocation across the vector. The key issue addressed in our ap-
proach is how to communicate this adaptation efficiently. Also in con-
trast to variable-length quantization schemes that often use a uniform
noise allocation, e.g. through use of a uniform scalar quantizer com-
bined with Huffman coding of quantization indices, our scheme fixes
the total bit-allocation and uses an unequal noise allocation within the
vector. These features can allow the encoder to select bit-assignment
patterns based on a variety of criteria besides MSE, e.g. considering
masking effects within the vector.

Our prior work1 looked at some initial schemes and potential ben-
efits of the approaches when applied to MDCT-based coding of speech
and audio. The focus was mainly on the sparse nature of bit assign-
ments at low bitrates for an MSE criteria. It is shown that schemes
with good MSE performance often concentrated bit-assignments into
a few sub-vectors in each target vector. This effect can be seen later in
Table 2. In this paper we extend the schemes to multi-option schemes
where the bit-pattern has further degrees of freedom to adapt to targets
“x”. In this paper we focus on the MSE criterion simply to illustrate
the general principle. However, other criteria such as minimizing the
MSE subject to a constraint on how sparse an allocation is can also be
considered in the framework.

The paper is organized as follows. In Section 2 we review the
basic concept of a partial-order scheme, showing how partial orders
are specified and used in quantization. In Section 3 we show how to
design single-class schemes and then move on to multi-class schemes
in Section 4. Examples of multi-class designs and benchmark designs
are presented and compared in Section 5. The paper concludes with a
discussion in Section 6.

1Under review by the IEEE Trans. on Speech and Audio Processing
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2. A REVIEW OF PARTIAL ORDERING SCHEMES

We focus on the underlying problem of quantizing a target vector x of
dimension N given a total bit budget of B bits for quantization. Here,
for example, x could consist of MDCT coefficients from a single scale-
factor band in a transform or transform-predictive speech/audio coder
[1][6]. Such cases that underly the motivation of this work.

It is assumed that B is known both to the encoder and decoder
and determined by earlier stages in the coding algorithm. The vector x
is assumed to be a statistically normalized with little or no additional
structure that can be leveraged by techniques such as linear predictive
modelling, transforms, etc. We will focus on the illustrative case of
vectors of i.i.d. Laplace random scalars. Often normalized MDCT co-
efficients of audio can have marginal distributions very close to that of
Laplace distributions [1].

The underlying premise of Partial Ordering Schemes is that within
a limited sampling (group) of random vectors or scalars there can be
enough statistical variation to motivate an unequal assignment of quan-
tization resources across the group at low bit-rates. This is true even
when scalars/vectors are i.i.d. We look at the case where a group of
q such i.i.d. p-dimensional sub-vectors x = {x0, . . . ,xq−1}, with
N = qp, is to be quantized with a total of B bits. The approach we
will take is to quantize each sub-vector xk with a p-dimensional fixed-
rate VQ given a signal adaptive assignment of bk(x) ≤ B bits to that
sub-vector.

Here it is worth noting that if we simply wanted to minimize
the average MSE the best approach would be to design a straight-
forward single-stage B-bit N -dimensional VQ. However such an ap-
proach may not be practical. For example if N = 32 and B = 24
(0.75 bits/scalar) the codebook required consists of 229 scalar entries
which can be prohibitively large to store or search. Also, even if pa-
rameterized VQs, such as multi-stage VQs or trellis structured VQs,
are of interest we have broader goals of wanting to know, control and
communicate to the decoder the distribution of bits (noise) across the
vector x.

If sub-vectors x0, . . . ,xq−1 are i.i.d. then one simple “Bench-
mark” strategy to quantize the sub-vectors with respect to an MSE
criterion is to divide the B bits up as equally as possible among vec-
tors with ek bits assigned to xk:

Benchmark: ek = �B/q� or �B/q� and
∑q−1

k=0
ek = B (1)

The � � and � � allow for consideration of cases where B/q is not
an integer.

Each sub-vector is then quantized with an appropriate ek-bit VQ
codebook, and the noise-allocation across x is essentially constant.
In fact, it is shown that given random scalars y0, . . . , yn−1 under a
high resolution approximation, the optimum bit-allocation for an MSE
criterion has the form [2, Chapter 8, equation 8.3.4]:

bk = b̄ + δk − 1

2
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)
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2
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)
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Here bk is the assignment to yk, σ2
k is the variance of yk, fk(y) is the

PDF of yk/σk, ρ2 is the geometric mean of values σ2
0 , . . ., σ2

n−1, and
H is the geometric mean of values h0, . . . , hn−1.

If y0, . . ., yn−1 are i.i.d., then bj = bk for all j, k motivating the
equal allocation of (1). However, at low bitrates (which violates the
high resolution approximation) an equal assignment may not be the
best. Also, (2) assumes a fixed assignment that does not change for
any realization of the random scalars. Making the assignment adaptive
to the actual values of y0, . . . , yn−1 (similarly to x0, . . . ,xq−1) may
improve performance.

2.1. Defining a Partial Order

Partial ordering schemes allow for an adaptive unequal bit assignment
by arranging target vectors into groups and defining the assignment
as a function of this grouping. To do this each realization of targets
x0, . . . ,xq−1 are arranged into a number of ordered non-overlapping
groups. If we have s ordered groups G0,. . . , Gs−1 with nj sub-vectors
in Gj (with

∑s−1

k=0
nj = q) one can specify this ordered arrangement

with b̂over bits of side information. Here:

b̂over = �log2(q!) −
∑s−1

j=0
log2(nj !)� (3)

Since only the membership in groups are defined, not the internal or-
der inside of the groups, we have an incomplete ordering of the targets
xk0 , . . . , xkq−1 , hence the term “Partial Ordering”. Specifying a par-
tial order requires less bits than a full ordering which would require
and overhead of �log2(q!)� bits.

To further reduce the overhead of defining a partial order, a general
two-stage scheme to ordering is used. In one such approach the first-
stage arranges sub-vectors into u non-overlapping groups of c sub-
vectors each. Since our sub-vectors are i.i.d. we use in this paper a
simple scheme of grouping consecutive sub-vectors where a first-stage
group Fk = {xck, . . . ,xck+c−1}. In general any deterministic group-
ing (which is known to, and thus can be inverted at, the decoder) can be
used. The second stage then partially orders these first-stage groups.

Define a full ordering of the groups as Fj0 ,Fj1 ,. . .,Fju−1 . With

nj/c an integer for all j and q/c = u =
∑s−1

j=0
nj/c, one can specify

a partial order for the two-stage approach with only

bover = �log2((q/c)!) − ∑s−1

j=0
log2((nj/c)!)� bits (4)

For example, a grouping of these fully ordered first-stage groups into
3 second-stage groups could be:

There is no internal order within each group
{Fj0 , . . . ,Fjn0/c−1}︸ ︷︷ ︸

G0

{Fjn0/c
, . . .}︸ ︷︷ ︸

G1

, {Fj n0+n1
c

, . . . ,Fju−1}︸ ︷︷ ︸
G2

(5)

2.2. Using a Partial Order for Quantization

A partial order scheme uses bover bits to specify the order and then
takes the remaining R = B − bover bits and assigns them to each
second-stage group with group Gk getting Bk bits. Here

∑
k

Bk = R
and Bk ≥ 0. The Bk bits are then divided as equally as possible within
a group with each xi ∈ Gk being assigned either

b̂i = �Bk/nk� or �Bk/nk� bits with
∑

xi∈Gk
b̂i = Bk (6)

The effective adaptation in assignment to x is through the adaptation
in the grouping communicated through the overhead bover .

It can be shown that at some bitrates (e.g. sufficiently small B) a
good selection of Bk, s, c, and n0, . . . , ns−1 can achieve an average
MSE performance that is better than the equal assignment in (1). To
understand why such a partial order is often sufficient to provide some
gain, let us take the case of c = 1 (Fk = xk) where the full ordering
is defined by energy with

zi = xki where ‖xki‖2 ≤ ‖xki+1‖2 ∀i (7)

We now look at the examples of δk, σk, and hk as defined in (2) for
these sorted variables zk. To estimate these values 106 realizations of
x0, . . . ,xq−1 (i.i.d. Laplace random scalars) are generated in Matlab,
sorted to make z and then used to estimate the values. The resulting δk

values, the effective difference in predicted bit-assignments bk in (2),
are shown in Figure 1. The figure shows that the predicted assignment
increases with k.
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Figure 1: δ̌k for zk being sorted scalar (p = 1) Laplace rv’s.

One way to think of an unequal assignment based on groupings
(partial orderings) is as a piecewise linear approximation to assign-
ments as in (2). See the Figure 1. Another is as assignments that
define how “Typical” a sub-vector is relative to an average behavior.
See [5] for a different (though related) discussion on “Typical” sets.
Both views are illustrative only and not entirely the case. Also, for low
bitrates one also has to consider setting lower allocations to zero as
done in reverse water-filling [5, Section 13.3.3]. The next section will
describe how to select good groupings and bit-assignment patterns.

A final point to mention is the criterion/algorithm defining the
groupings, i.e. which first-stage groups get put in which second-stage
groups. For a bit-assignment as in (6) one could in fact check every
possible group-assignment for a given x for the one with the best per-
formance. Following however the observation in (7), the full order-
ing of Fj0 ,. . ., Fju−1 is defined in terms of increasing energy, where
‖Fk‖2=

∑
xi∈Fk

‖xi‖2 and ‖Fjk‖2≤ ‖Fjk+1‖2. The Fk’s are then
assigned to the {Gk} in this order as in (5), and it is assumed that Gk

gets proportionally more (or equal) bits than Gj if k > j.

3. DESIGNING AND USING SINGLE-OPTION SCHEMES
For a given grouping option (s, c, and n0, . . . , ns−1), a given dimen-
sion q and a selected number of bits B, the designer selects (offline)
a fixed pattern of assignments B0, . . . , Bs−1. This pattern does not
adapt and is known both to the encoder and decoder. What does adapt,
of course, for each x is the membership of each group (i.e. mappings
of targets xi ∈ Gk). In selecting the assignment pattern the only con-
straint the designer has is

∑
j
Bj = B − bover = R, and there are

∑B

k1=0

∑B−k1
k2=0

· · ·∑B−ks−2
ks−1=0

1 (8)

possible combinations of such assignments that meet this constraint.
For a given criterion (e.g. MSE) finding the best bit assignment with
a fixed s, c and n0, . . . , ns−1 can be done for small B by an exhaus-
tive search checking the performance for each option over a test set.
Selection of the best scheme then considers a search over all n, c and
n0, . . . , ns−1.

To speed the search some bit-assignments are of less interest. For
example, based on the full-ordering of first-stage groups in the end of
the previous section it is expected that Gk should receive proportion-
ally more (or equal) bits than Gj for k > j. Also note, as shown in
(6), that within a group Gk the allocations to sub-vectors in the group,
i.e. {b̂i : xi ∈ Gk}, can at times differ by 1 bit. However, as in (5),
the internal order within groups is not defined. To handle the differen-
tiations (without loss in generality), in each group we simply arrange
sub-vectors in increasing jk. The internal (possible 1-bit) differenti-
ations can then be assigned at will (in a known pattern) to members
xi ∈ Gk without a performance loss. In the experiments to follow
random patterns are used.

4. MULTI-CLASS EXTENSIONS
It has been shown that a simple dual-option scheme1 can improve per-
formance. This scheme is a fail-safe variation where an extra 1 bit is
used to decide between an assignment that is in the spirit of (1), or one
that is based on a partial-order. If the bit selects an assignment as in
(1) the remaining B − 1 bits are spread as equally as possible among
the q targets with êk= �(B−1)/q� or �(B−1)/q� assigned to xk and∑q−1

k=0
êk=B−1. If the bit selects a non-trivial pattern of assignments

based on a partial order, then the order is communicated with bover

bits and the R̂ = B − 1 − bover bits is divided between the groups as
previously described.

We now extend this idea to general multi-class schemes. Here we
allow the quantizer to select between L such schemes for each target
x, and bch = �log2(L)� bits of overhead is used to communicate the
selection for each target. Each of the L schemes can differ by s, c,
n0, . . . , ns−1, and bover and/or its pattern of bit-allocation {B̃k}. For
each scheme “S” we have the constraint:

∑s(S)−1

i=0
B̃i(S) = R̃ = B − bch − bover(S) (9)

Designing such schemes can be complex. For single-option and
fail-safe schemes it is often practical to simply perform an exhaustive
search of all the possibilities as described in Section 3, i.e. all pos-
sibilities of schemes and bit-assignments. However for multi-option
schemes, considering all these individual possibilities {B̃k}, s and
n0, . . . , ns−1 with all L multi-class combinations of such schemes,
an exhaustive search is not necessarily practical.

In our investigations we do a limited search. We first find the
D best single-option pairs of ordering schemes and bit-assignments
that are designed with the constraint of (9). Always included is the
equal assignment scheme (n0=q, c=1) with bover=0. For each scheme
the MSE obtained for each training vector x is noted. For each of
the D!/(D − L)!L! possible L-class combinations the MSE for each
target vector is simply the minimum MSE over the L schemes being
considered. The best L-class combination is the one with the minimum
average MSE over all vectors x.

5. AN EXAMPLE WITH PERFORMANCE COMPARISONS

We focus on an example with N = 16 and sub-vectors xk with p=4.
Other N and p have been tested and will be discussed later and in
the presentation. We limit our investigation to the following schemes
(options) in Table 1. Here q = 4 and we consider c=1, 2.

Table 1: Schemes Considered
Label s n0/c n1/c n2/c n3/c n4/c

A 2 u − 1 1
B 3 1 u − 2 1
C 3 2 u − 4 2
D 5 1 1 u − 4 1 1
E 4 2 u − 4 1 1
F 4 1 1 u − 4 2
G 3 u − 2 1 1
H 2 u − 2 2

Equal 1 u

For the experiment p-dimensional fixed-rate VQs are trained with a
training set of 80×106 zero-mean unit-variance i.i.d. Laplace random
scalars. Sub-vectors are non-overlapping p vectors from this sequence.
Codebooks trained are of size 0, 1, . . . , 7 bits, limiting 0 ≤ b̂i ≤ 7.
Another set of 80 × 106 zero-mean unit-variance i.i.d. Laplace ran-
dom scalars forms the test set. Test vectors x are non-overlapping
16-dimensional vectors from this set. This set will be used to search
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Table 2: Performance of various schemes with N = 16, p = 4 and B = 12.
Design Bitrate B bch MSE (dB) Scheme s c n1, . . . , ns border {bi : xi ∈ G0}, . . . ,
type (bits/scalar) (bits) (bits) S (bits) {bi : xi ∈ Gs−1} (bits)

Benchmark (1) 0.75 12 0 -3.40 Equal 1 1 4 0 {3, 3, 3, 3}
Single-opt 0.75 12 0 -3.68 H 2 1 2,2 3 {0, 0}, {5, 4}
Fail-Safe 0.75 12 1 -3.88 Equal 1 1 4 0 {3, 3, 3, 2}

A 2 1 3,1 2 {1, 1, 0},{7}
2-option 0.75 12 1 -3.88 Equal 1 1 4 0 {3, 3, 3, 2}

(equal to Fail-Safe) A 2 1 3,1 2 {1, 1, 0},{7}
4-option 0.75 12 2 -4.15 Equal 1 1 4 0 {3, 3, 2, 2}

A 2 1 3,1 2 {1, 0, 0},{7}
B 3 2 2,0,2 1 {0, 0},{−},{5, 4}
H 2 1 2,2 3 {0, 0},{4, 3}

A single-stage 16-dimensional 12-bit VQ has an MSE of -4.3 dB

and select the schemes+bit-assignments (for various B and bch) as
well to calculate the final MSE performance. Calculating final MSE
performance on a second test set did not change the results.

With the codebooks and test-set we designed single-option schemes
(bch = 0), Fail-Safe schemes (bch = 1 with one scheme being the
benchmark scheme), 2-option schemes (L = 2, bch = 1), and 4-
option schemes (L = 4, bch = 2). For each value B − bch we test all
possible bit-assignments with all schemes and pre-select the D = 20
schemes+assignments that give the best MSE performance. We then
search all possible L multi-class combinations of these D schemes as
described in Section 4.

Table 2 shows the results for the case B=12, i.e. a bitrate of B/N
= 0.75 bits/scalar. For comparison we also designed a single-stage
16-dimensional 12-bit VQ and obtained an MSE of -4.3 dB. The re-
sults clearly show that despite the overhead of the partial ordering
schemes, the ordering allows such schemes to make net gains through
the bit-assignments. The 4-option scheme has a gain over the bench-
mark of about 0.75 dB and comes close to the performance of the
16-dimensional VQ. This shows that it is possible to build effective
high-dimensional VQs out of lower dimensional VQs (in this case di-
mension p = 4 VQs) using the new approach. Also interesting is that
the best 2-option scheme found is in fact the Fail-Safe scheme.

Similar result are seen for other N , e.g. N = 12, 24, 32, and other
B ranging from bitrates of 0.25 to 1.0 bits/scalar. In these other cases
some of the schemes mentioned in Table 1 and not used in Table 2 are
selected. A general trend is that the larger the B (or larger N for a
given bits/scalar) the more likely a scheme with a larger border is se-
lected as the one with the best MSE performance. Another trend is that
as the VQ and sub-vector dimension p gets smaller the gain in perfor-
mance (in dB) over the corresponding benchmark of (1) increases.

6. CLOSING REMARKS

The paper presented a description of partial order quantization schemes
and described a multi-option extension to these schemes. The schemes
are motivated by quantization challenges that arise in a number of
transform and transform-predictive coder designs [1] [6] . All schemes
work by using the ordering to direct an unequal allocation of bits
across sub-vectors. Doing so allows one to improve the average MSE
performance on target vectors relative to a benchmark equal bit assign-
ment. The schemes have a useful property of being able to communi-
cate to a decoder an explicit bit-assignment (noise-allocation) across
each target. In addition, the schemes are less complex both in terms
of search complexity and codebook size when compared to that of the
corresponding single-stage full-dimension VQ, e.g. schemes in Table
2 are less complex than a single-stage 12-bit 16-dimension VQ.

An interesting issue to consider is that of variable-length coding.
Here the quantization indices are further compressed with variable-

length codes. Using this approach one could try to take the benchmark
scheme in Table 2, or any of the schemes, and further reduce the aver-
age bitrate thus improving the rate-distortion tradeoff. However for the
examples in Table 2, and often at the rates B/N we are considering,
this is not the case. In particular for the benchmark scheme in Table
2 the calculated entropy of the quantization indices for the 3-bit code-
book used is practically equal to 3 bits/sub-vector (0.75 bits/scalar),
i.e. all eight codewords are used with equal frequency. Similar results
are seen for cases B/N < 0.75. The entropy of quantization indices
was also investigated for some of the partial-order schemes. Here for
multi-option schemes the entropy estimates are first conditioned on the
scheme used and then the average entropy (considering the frequency
of use of each constituent scheme) is calculated. For the few cases
tested, the result is the same as in the benchmark scheme, i.e. the aver-
age entropy is practically equal to B/N bits/scalar.

Finally, there are further extensions to these schemes1. In one such
extension different sub-vector VQ codebooks are used for each scheme
in a multi-option scheme. For example, in the Fail-Safe scheme of Ta-
ble 2 one set of codebooks are trained specifically for the equal bit-
allocation and another set for the unequal allocation. Here a multi-
option scheme therefore looks like a classified VQ scheme [2]. Train-
ing codebooks for this extension is an iterative process of parsing the
training data using a given set of schemes each with its own codebook
designs. Data that was best coded with a given scheme is then used to
re-train the codebooks for that scheme, and the data is then re-parsed.
Doing this with the Fail-Safe scheme of Table 2 can reduce the MSE
to -3.96 dB. Future work will further explore this classified approach
as well as variable-length vector coding of quantization indices.
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