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ABSTRACT 

In this paper , a fast-search algorithm is introduced to 

reduce the complexity of LSF quantization in speech 

coding. A new inequality between the weighted mean and 

the weighted Euclidean distance is derived. Using this 

inequality, many codewords that are impossible to be the 

nearest codeword are rejected directly. The proposed 

algorithm produces the same output as conventional full 

search algorithm and the experiment results confirm its 

effectiveness. 

1. INTRODUCTION 

Linear predictive coding (LPC) is widely used as short 

time spectral envelope estimation in various speech 

processing applications. LPC coefficients are converted 

into line spectral frequency (LSF) parameters [1] for the 

purpose of quantization and checking the stability of the 

synthesis filter. 

Vector quantization (VQ) [2] is a very efficient appro-

ach for different speech processing due to its excellent 

rate-distortion performance. In low bit rate speech coding, 

most speech coders standardized after 1994 utilize some 

sort of VQ for the LSF parameters. 

In order to find the best-matched codeword in the 

codebook, the ordinary VQ coding scheme employs the 

full search algorithm (FSA), which examines the 

Euclidean distances between the input vector and all 

codewords in the codebook. The expensive computational 

complexity of the FSA often limits the application of VQ 

to the real-time compression systems requiring good 

coding efficiency. To overcome this problem, many 

researchers have looked into a fast algorithm to speed up 

the VQ process [3-5]. 

A well-known algorithm is equal-average nearest 

neigh-bor search (ENNS) algorithm [2], which utilizes the 
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mean of input vector to reject the unlikely codeword. This 

algorithm shows a great deal of computation time savings 

over conventional full search algorithm with only N 

additional memory. 

Generally, we use the Euclidean distance as the 

distortion measure in ENNS algorithm. But weighted 

Euclidean distance is employed in the quantization of LSF 

parameters to improve the perceptual performance. Hence, 

ENNS algorithm is not suitable for this case. 

In this paper, we proposed a new fast-search algorithm 

which is based on the ENNS algorithm but the weighted 

Euclidean distance was used as distortion measure. The 

proposed algorithm develops a new inequality between 

the weighted mean and the weighted Euclidean distance. 

Since the codeword searching complexity is reduced by 

this inequality, the proposed algorithm requires less 

computation time than the full search algorithm. 

The rest of this paper is organized as follows: The 

detailed algorithm was given in section 2. In section 3, the 

practical quantizer was described. Section 4 showed the 

results of experiments to prove the effectiveness of this 

algorithm. Section 5 introduced a remained problem. A 

solution to this problem will speed up the search process 

further. Finally, we summarized our work in section 6. 

2. THE PROPOSED ALGORITHM 

Before describing the proposed algorithm, we will give a 

definition and review the ENNS algorithm firstly. 

Definition 1: Let
1 2

( , , ..., )
N

x x xx and 
1 2

( , , ..., )
N

be 

a vector, respectively. The mean of vector x,
x

m is defi-

ned as: 

1 2

1
( ... )x Nm x x x

N
                1

The weighted mean of vector x,
,x

m is defined as 

, 1 1 2 2

1
( ... )x N Nm x x x

N
         2

ENNS algorithm uses the vector mean to reject many 

unlikely codewords. The main logic of ENNS algorithm 

can be stated as follows. 
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Theorem I [1] (ENNS algorithm): Let 
1 2( , ,..., )Nx x xx

be a vector and 
1 2( , ,..., )Ny y yy  be a codeword. If the 

distortion is the Euclidean distance, then 

( , ) | |x yd N m mx y                      3

For any codeword y, if 
2 2

min( )x yN m m d                        4

where 
min

d is a current minimum distance of x represented 

by a certain codeword, y can not be the nearest codeword 

and it is unnecessary to calculate ( , )d x y .

For the quantization of LSF parameters, the weighted 

Euclidean distance is employed instead of the Euclidean 

distance to improve the perceptual performance. Hence, 

ENNS algorithm is not suitable for this case. 

In practical, the following weights are used, which is 

proposed by Paliwal and Atal in 1993 (for convenience, 

the weights are given by squared form) [6]: 
0.15 2

2 0.15 2

0.15 2

[P( ) ]    1 8

[0.8 P( ) ]    9

[0.4 P( ) ]    10

i

i i

i

i

w i

i

            5

where ( )
i

P  is power spectrum density (PSD) defined 

by the set of LSFs { }
i

 and a system with a prediction 

order equal to ten is considered. Hence, the weights { }
i

w

vary with each LSF vector. 

    We divided the weights into two parts: IWV (invariable 

weighted vector) and VWV (variable weighted vector). 

The IWV is defined as [1,1,...,1, 0.8, 0.4] . The VWV 

is defined as 
0.15 0.15 0.15

1 2 10
[ ( ) , ( ) , ..., ( ) ]P w P w P ws  and 

it changes each frame. 

Now it is time to describe our algorithm. Firstly, we 

have the following theorem: 

Theorem II: Let 
1 2( , ,..., )Nx x xx be a vector and 

1 2( , ,..., )Ny y yy  be a codeword. The weighted vector 

is
1 2 1 1 2 2

[ , ,..., ] [ , , ..., ]
N N N

w w w s s sw , where 

1 2
[ , ,..., ]

N
 is IWV and 

1 2
[ , , ..., ]

N
s s ss  is 

VWV. If the distortion is weighted Euclidean distance, 

then 
2 2 2

, ,
1

( , ) min{ } ( )
w i x y

i N

d s N m mx y         6

For any codeword y, if 
2 2 2

, , ,min
1

min{ } ( )
i x y w

i N

s N m m d            7

where 
,minw

d is a current minimum weighted distance of x

represented by a certain codeword, y can not be the 

nearest codeword and it is unnecessary to calculate 

( , )wd x y .

Proof:  

2 2 2

1 1

( , ) [ ( )] [ ( )] ,
N N

w i i i i i i i

i i

d w x y s x yx y

2 2

1

2 2

1
1

2 2

1
1

2

1

2

( , ) [ ( )]

                min{ }[ ( )]

                [min{ }] [ ( )]

[min{ }]               ( , )

N

w i i i i

i

N

i i i i
i N

i

N

i i i i
i N

i

i
i N

d s x y

s x y

s x y

s d

x y

x y

Let ' , '
i i i i i i

x x y y , we have 

2

1

2

1

2

2

( , ) [ ( )]

             ( ' ' ) ( , )

N

i i i

i

N

i i

i

d x y

x y d

x y

x' y'

By theorem I, we have 
2 2

' '
( , ) ( )

x y
d N m mx' y' , then 

2 2 2 2 2

1 1

2 2

' '
1

2 2

, ,
1

( , ) [min{ }] ( , ) [min{ }] ( , )

            [min{ }] ( )

            [min{ }] ( )

w i i
i N i N

i x y
i N

i x y
i N

d s d s d

s N m m

s N m m

x y x y x' y'

With the above definitions and theorem in hand, we 

now turn to describe the proposed algorithm. For an input 

vector, the algorithm first calculates its weighted mean 

value. For each codeword y, the algorithm checks whether 

inequality (7) is satisfied or not. If the answer is yes, 

codeword y is rejected. Otherwise, the weighted 

Euclidean distance is calculated between the input vector 

and the codeword.  

Secondly, we need to explain the reason for dividing 

the weight vector into IWV and VWV here. In a word, it 

is for improving efficiency. If we don’t divide it, we can 

get another inequality corresponding to (7) through the 

similar approach: 
2 2 2

,min
1

min{ } ( )
i x y w

i N

w N m m d             8

Since the weight 0.15

9
P( ) and 

0.15

10
P( ) are multiplied by 

0.8 and 0.4 respectively, the coefficient 
2

1

min{ }
i

i N

s  is larger 

than 
2

1

min{ }
i

i N

w  in most cases. So there is more chance to 

reject a codeword through inequality (7) than (8). In 

section 4, the experimental results will show it. 

Now, we can use our algorithm to accelerate the 

quantization of LSF parameters. The detail is described in 

section 3. 
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3. PRACTICAL CASE 

In this section, we apply our fast algorithm on a predictive 

split VQ (PSVQ) structure [7, 8], which employed a (4,6) 

split VQ scheme and 10 bits codebook respectively. 

Compared with the full search algorithm, the search 

complexity can be reduced largely when theorem II is 

used directly. In the practical case, another two techno-

logies were used to speed up the searching process further. 

3.1. Sorting the codewords by their weighted means 

Similar to the ENNS algorithm, the proposed algorithm 

employed the sorted codebook to accelerate the search 

process. 

For our purpose, the codewords are sorted in the 

ascending order by their weighted means. Thus, some 

codewords can be rejected directly without any 

computation. Suppose x is the input vector and yk is the k-

th codeword. If  
2 2

, ,
1

min{ } ( )
ki x y

i N

s N m m  is larger than  

2

,minw
d  and 

,x
m  is less than 

, ky
m , the rest of the higher-

index codewords as well as the k-th codeword can be 

rejected as a whole since inequality (7) is always true for 

these codewords. Similarly, if 
2 2

, ,
1

min{ } ( )
ki x y

i N

s N m m

is larger than 
2

,minw
d  and 

,x
m  is larger than

, ky
m , the 

rest of the lower-index codewords as well as the k-th 

codeword also can be rejected as a whole. 

3.2. Setting flag points to aid search

In practice, we find it has less chance to reject a 

codeword by inequality (7) in the beginning phase of 

search process. The reason is 
2

,minw
d  is usually not small 

enough and 
2

, ,
( )

x y
m m  is not large enough. So we 

use full search algorithm other than the new fast algorithm 

to process codewords in this phase.  We set some flag 

points to aid search. Table.1 shows the distribution of flag 

points. At the beginning, for each codeword whose index 

is equal to the flag point, we calculate the weighted mean 

distance 
2

, ,
( )

x y
m m . Then we can find the minimum 

one and corresponding index: index_opt. After that, we 

use full search algorithm directly to deal with the 

codewords whose indexes are located in the range of 

[index_opt - M, index_opt + M], where M is equal to 49 

for the first subvector and 124 for the second subvector. 

Now, we can summarize the practical search process. 

An example of the search procedure was illustrated in 

Figure 1. 

Fig. 1. An example of the proposed fast search algorithm 

Table.1 Distribution of flag points 
Number 

of flag 

points

Index of 

first flag 

point

Index of 

last flag 

point

Interval 

of flag 

points 

LSF 1 – 4 38 24 999 25 

LSF 5--10 32 99 924 25 

1) Before the search process, make sure the codebook is 

sorted by the weighted means. 

2) For each flag point, we calculate the weighted mean 

distance 
2

, ,
( )

x y
m m  between input vector and 

codeword. Assume that the u-th codeword is found 

to have the minimum weighted mean distance. 

3) Using full search algorithm to deal with codewords 

whose indexes are located in the range of [u-24, 

u+24]. 

4) Using proposed fast algorithm to search from the (u-

25)-th codeword. Suppose inequality (7) is false at 

this codeword. The weighted Euclidean distance has 

to be calculated in succession. The same case is for 

the (u+25)-th codeword. 

5) Suppose inequality (7) is true for the first time at the 

(u-26)-th codeword. Then, the rest of the lower-

index codewords as well as the (u-26)-th codeword 

are rejected as a whole. The reason has been 

explained in section 3.1. 

6) The search continues only for the higher-index 

codewords. Suppose inequality (7) is true again at 

the (u+40)-th codeword, which indicates the rest of 

full 

search 

flag 

points

1st codeword

……

……

(u-26)-th codeword

(u-25)-th codeword

(u-24)-th codeword

……

u-th codeword

……

(u+24)-th codeword

(u+25)-th codeword

(u+26)-th codeword

1024-th codeword

(u+27)-th codeword

(u+40)-th codeword

……
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the higher-index codewords as well as the (u+40)-th 

codeword can be rejected as a whole. 

7) The search process is now terminated. 

Although PSVQ is employed here, it is worth 

mentioning that other VQ structures can also benefit from 

this algorithm. 

4. EXPERIMENTAL RESULTS 

To compare with the full search algorithm, we use speech 

test files (2426 frames all together) to evaluate the 

proposed algorithm. The LSF parameters quantizer uses 

PSVQ structure [7, 8] and the codebook is designed by 

the Linde-Buzo-Grey (LBG) algorithm. The (4,6) split 

VQ scheme and 10 bits codebook are employed 

respectively.  

Table.2 Comparison of computation complexity 

Algorithm 

Name 

Memory 

consu-

mption 

Complexity 

of LSF1-- 4 

Complexity 

of LSF 5--10

Full search 10K 100 100 

Proposed by 

inequality (8) 
12K 23 81 

Proposed by 

inequality (7) 
12K 23 43 

Note: the complexity of full search is normalized to 100. 

    Table.2 shows the computation complexity of different 

algorithms. The complexity of full search is normalized to 

100. It is seen from the table that the proposed algorithm 

offers considerable improvement over full search method. 

We also find that the complexities are same when we 

quantize the first four LSF parameters by inequality (7) or 

(8). The reason is that two inequalities are same under this 

situation since IWV for the first four LSF parameters is 

[1,1,1,1] . But for the last six LSF parameters, the 

situation is changed. Compared with inequality (8), using 

(7) can save about half complexity, which is consistent 

with the explanation in section 2. 

5. ONE REMAINED PROBLEM 

Let us review the inequality (6). We rewrite it here: 
2 2

, ,
( , ) ( )( )

w x y
d N m mfx y s        9

where f(s)=
2

1

min{ }
i

i N

s . Let us recall how we get the factor 

2

1

min{ }
i

i N

s . In fact, when we deduct this inequality, we use 

the relation: 

2 2 2 2

1
1 1

( , ) [ ( )] min{ } [ ( )]
N N

w i i i i i i i i
i N

i i

d s x y s x yx y

    Naturally, someone will ask a question: Can we find 

another f(s) which satisfies inequality (9)? To answer this 

question is not an easy task. 

If we let S, Z be a N-dimension vector, respectively, 

where the i-th element of S is 
2

is , and the i-th element of 

Z is 
2

( ( ))
i i i

x y , the above question can be abstracted 

to a math problem: 

Find a function f(.) which satisfies the relation 

1
,   ( ) || ||fS Z S Z                   10

where <S, Z> is inner product of S and Z, and ||Z||1 is the 

L1-norm of Z.

Obviously, if we can find an f(S) which is larger than 
2

1

min{ }
i

i N

s  for any vector S, using (9) can reject more 

code-words than (7) and we can speed up the search 

process further.  

6. CONSLUSION 

In this work, an improved fast search algorithm is 

proposed. A new inequality between the weighted mean 

and the weighted Euclidean distance was derived. We 

apply the proposed fast-search method to a predictive split 

vector quantizer. The experimental result shows that the 

complexity can be reduced to 23% and 43% for the first 4 

LSF and last 6 LSF parameters, respectively. In the end, it 

is worth mentioning that if we can solve a remained 

problem proposed in section 5, this algorithm can be 

speeded up further. 
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