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ABSTRACT
The speech quality estimation scheme in [1] is improved

with the addition of a reference model of the behavior of
speech degraded by different transmission and/or coding
schemes. Moreover, via maximization of a mutual infor-
mation measure, we validate the use of segmental SNR as a
measure of the amount of multiplicative noise present in the
test signal. These two additions result in an algorithm that is
more accurate and more robust to certain distortion condi-
tions. When tested on unseen data, the proposed algorithm
outperforms the current “state-of-art” P.563 algorithm while
requiring considerably lower computational complexity.

1. INTRODUCTION

Speech quality has long been recognized as a pivotal fac-
tor in voice telecommunication but speech quality measure-
ment has remained labor intensive. In the most common test
[2], listeners rate the speech they just heard on a five-point
opinion scale, ranging from “bad” to “excellent.” The rat-
ings are assigned integer scores ranging from 1 for “bad”
to 5 for “excellent.” The average of these scores, termed
mean opinion score (MOS), is widely used to characterize
the quality of telephony equipment and services.

As an alternative to subjective measurement, machine-
automated “objective” measurement provides a rapid and
economical means to estimate user opinion, and makes it
possible to perform real-time speech quality measurement
on a network-wide scale. Non-intrusive objective algorithms
require only the degraded (processed) signal as input, while
intrusive algorithms input both the clean (unprocessed) and
degraded signals. Research into non-intrusive quality mea-
surement usually entails comparisons between the test sig-
nal and normative behavior of clean speech, amongst other
distortion-sensitive features. In [1], features of the received
speech signal are compared to Gaussian-mixture probabil-
ity models (GMMs) that serve as artificial reference models
of clean speech behavior. In [3], degradations are detected
when calculations of vocal-tract parameters yield implausi-
ble results relative to normal speech. Modulation-spectral
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Fig. 1. Architecture of the proposed algorithm.

features derived from the temporal envelope of speech are
used in [4] to detect improbable movement speeds of the
human articulatory system. The International Telecommu-
nications Union ITU-T P.563 standard represents the “state-
of-art” algorithm [5]. P.563 tests for inconsistencies in vocal
tract analysis, for high levels of noise, and for speech inter-
ruptions, mutes and time clippings.

This paper proposes a more accurate and robust GMM-
based speech quality measurement algorithm. Robustness
and increase in accuracy are achieved by equipping the al-
gorithm with information regarding the behavior of speech
degraded by different transmission and/or coding schemes
as well as the behavior of clean speech. Simulation shows
that our approach offers accurate and yet low-complexity
measurement of speech quality.

2. ALGORITHM DESCRIPTION

The overall architecture of the proposed algorithm is de-
picted in Fig. 1. Perceptual features are first extracted from
the test speech signal every 10 milliseconds. The time seg-
mentation module labels the feature vector of each frame
as belonging to one of three possible classes: voiced, un-
voiced, or inactive. Offline, two reference models are cre-
ated. One uses high-quality, undistorted speech signals to
produce a reference model of the behavior of clean speech
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features. A second uses speech signals corrupted by dif-
ferent coding and/or transmission distortions to produce a
reference model of degraded speech behavior. In both in-
stances, this is accomplished by modeling the probability
distribution of the features for each of the three classes with
a GMM. Features extracted from the test signal are assessed
using the reference models by calculating “consistency” mea-
sures with respect to each of the six GMMs. The segmental
SNR block is added to compensate for files with high multi-
plicative noise. The calculated values serve as speech qual-
ity indicators and are mapped to an estimated MOS value.

2.1. Feature Extraction and Time Segmentation

As in [1], 5th order perceptual linear prediction (PLP) cep-
stral coefficients [6] are used as speaker independent per-
ceptual features. Here, as coding and/or transmission degra-
dations may affect the energy of the signal, the zeroth cep-
stral coefficient is kept as an energy measure. Time seg-
mentation is employed to separate the speech frames into
different classes and is performed using a voice activity de-
tector (VAD) and a voicing detector. The VAD from ITU-T
G.729B [7] is used here.

2.2. GM Reference Models and Consistency Calculation

Gaussian mixture models are used to model the PLP cep-
stral coefficients of each class of speech frames. A Gaussian
mixture density is a weighted sum of M component densi-
ties p(x|λ) =

∑M
i=1 αibi(x), where αi ≥ 0, i = 1, ..., M

are the mixture weights, with
∑M

i=1 αi = 1, and bi(x),
i = 1, ..., M , are K-variate Gaussian densities with mean
vector µi and covariance matrix Σi. The parameter list,
λ={λ1, . . . , λM}, defines a particular Gaussian mixture den-
sity, where λi = {µi, Σi, αi}. Using clean speech signals,
three different Gaussian mixture densities, pclean,class(x|λ)
are trained. The subscript “class” represents either voiced,
unvoiced, or inactive frames. For the degradation model,
pdegraded,class(x|λ) are found.

For the benefit of low computational complexity, we
make a simplifying assumption that vectors between frames
are independent. Improved performance may be achieved
with more sophisticated models, such as Markov models,
where statistical dependencies between frames can be con-
sidered. Nonetheless, the simplifying assumption has been
shown in [8] to provide accurate speech quality estimates.
Thus, for a given speech signal, the consistency between
the observation and the models can be defined as

cmodel,class(x) =
1

Nclass

Nclass∑

j=1

log(pmodel,class(xj |λ)) (1)

where x = x1, . . . , xNclass
are the PLP coefficient vectors,

Nclass is the number of such vectors in the frame class,

and the subscript “model” represents either the clean or the
degradation reference model. In total, six consistency mea-
sures are calculated.

2.3. Segmental SNR and MOS Mapping

In preliminary experiments without the “segmental SNR”
block (as depicted in Fig. 1), large estimation errors were
found on files degraded by modulated noise reference unit
(MNRU) [9]. Fig. 2 (a) depicts absolute estimation errors
for a test database. Note that the largest errors occur at low-
SNR MNRU degradations (conditions 46-48). It is known
that MNRU introduces multiplicative noise in a manner sim-
ilar to logarithmically companded PCM and ADPCM sys-
tems [9]. In P.563, several features are used to describe mul-
tiplicative noise.

Our ultimate goal is to achieve accurate low complexity
speech quality measurement. To use a plethora of features to
estimate multiplicative noise is unfeasible. To this end, nor-
malized mutual information (NMI) is used to detect the sin-
gle best feature extracted by P.563. Here, NMI is the mutual
information between a feature (X) and subjective MOS (Y ),
normalized by the entropy of X or Y , whichever is smaller.
The feature with the highest NMI is ranked the most impor-
tant. For MNRU-degraded files, estimated segmental SNR
(SegSNR) is detected as being the most important feature.
The calculations performed in the “segmental SNR” block
are similar to those described in [5]. Fig. 2 (b) depicts es-
timation errors after SegSNR is used. Note a decrease in
absolute error for MNRU conditions 46-48. It is important
to emphasize that other conditions are not affected (nega-
tively) with the addition of the “segmental SNR” block.

Lastly, the “MOS mapping” block shown in Fig. 1 is
responsible for mapping the six consistency measures and
SegSNR to an objective MOS. We experiment with multi-
variate polynomial regression and multivariate adaptive re-
gression splines (MARS) [10]. Simulation results showed
that MARS provides better performance; the results below
are all based on using MARS.

3. ALGORITHM DESIGN CONSIDERATIONS

Preliminary “calibration” experiments were carried out in
order to find an effective combination of GMM configura-
tion parameters: M and covariance matrix type. For voiced
and unvoiced PLP frames we experiment with diagonal ma-
trices and M=8, 16, or 32, and M=2, 3, 5 for full covariance
matrices. For inactive PLP frames, we only experiment with
diagonal matrices and M=2, 3, or 6. In this calibration ex-
periment, a total of ten databases comprised of both clean
and degraded speech signals are used.

The speech databases include seven ITU-T P-series Sup-
plement 23 (Experiments 1 and 3) multilingual databases
[11], two wireless (IS-96A and IS-127 EVRC), and a mixed
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Fig. 2. “Per-condition” absolute MOS estimation error (a) without SegSNR and (b) with SegSNR.

database [12]. The combined ten databases contain 1760 de-
graded files and 1136 clean files. The degraded files include
speech coded using various reference codecs (e.g., G.726,
G.728, G.729, IS-54, and GSM-FR), single or in tandem,
corrupted by various channel errors and acoustic noise con-
ditions, and speech degraded by various levels of MNRU.
90% of the files are used to train the GM models and 10%
is left for testing. The clean and degradation GM models
are evaluated at the feature vectors of the test signal (x) for
each speech class, i.e., cclean,class(x) and cdegraded,class(x)
are calculated, respectively. Experiments suggest the use of
3 full GMM components for voiced frames, and 32 and 6
diagonal components for unvoiced and inactive frames, re-
spectively. These parameters strike a balance between algo-
rithm complexity and performance.

4. EXPERIMENT RESULTS

The aforementioned databases and combinations of M and
matrix types are used to design the clean and degradation
reference models. A separate set of seven MOS-labeled
databases is used to train the MARS mapping. Three data-
bases comprise speech coded with the 3GPP2 Selectable
Mode Vocoder (SMV). Experiment 1 encompasses tandem-
ing and nominal input level conditions, experiment 2 covers
channel impairments, and experiment 3 noisy environment
conditions. Three multilingual databases are comprised of
speech coded using the G.711, G.726 and the G.728 speech
coders, alone and in various different tandeming schemes.
The seventh database includes speech coded with various
different speech coders (e.g., G.723.1, G.729, G.729E, and
GSM-EFR), under various channel degradation conditions.
In all seven databases, speech degraded by different levels
of MNRU are also included.

To test the algorithm on “unseen” data, each database
is separated into two disjoint sets; one is kept for training,
the other for testing. Each SMV and the mixed database
are comprised of speech files from four female and four
male speakers. For each database, files from one female
and one male speaker are kept for training and the remain-
ing are used for testing. The multilingual databases are each
comprised of files from two male speakers and two female
speakers and are used entirely for training.

Table 1 presents “per-condition” correlation (R) and root-
mean-square error (ε) between subjective MOS and objec-
tive MOS, for each of the datasets. The results are obtained
after 3rd order monotonic polynomial regression, as recom-
mended in [5]. The column labeled “%↑” lists percentage
improvement in R obtained by using the proposed GMM-
based method over P.563. The percentage improvement is
given by

% ↑= RGMM − RP.563

1 − RP.563
× 100% (2)

and indicates percentage reduction of P.563’s performance
gap to perfect correlation. The column labelled “%↓” lists
percentage reduction in ε, relative to P.563, by using the
proposed scheme.

The proposed algorithm outperforms P.563 on all four
test sets. An average improvement in R of 45% and an av-
erage decrease in ε of 28% is achieved. We emphasize the
algorithm’s enhanced performance by comparing results for
the SMV-2 database. In [1], P.563 outperformed the GMM-
based algorithm by 13% in R and 6% in ε. Degradation
conditions in SMV-2 encompass frame errors with 1, 3, or
5% frame error rates. By introducing the degradation ref-
erence model, the algorithm becomes more robust to these
distortion conditions. The result is an improvement of ap-
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Table 1. Performance of P.563 and the proposed algorithm
on “unseen” datasets

Unseen P.563 Proposed
Dataset R ε R %↑ ε %↓

SMV-1 0.846 0.267 0.937 59.1 0.175 34.5
SMV-2 0.848 0.265 0.861 8.6 0.254 4.2
SMV-3 0.795 0.251 0.959 80.0 0.116 53.8
Mixed 0.912 0.242 0.942 34.1 0.199 17.8

Average – – – 45.4 – 27.5

proximately 22% in R and 10% in ε relative to [1]. It is also
worth mentioning that the performance gains attained on
SMV-3 suggest that the proposed method may be more ef-
fective than P.563 for speech under noisy environment con-
ditions.

A final test is performed on a de facto unseen database
with speech files coded using newer codecs (e.g., a cable
VoIP speech coder) than the codecs represented in the GMM
and MARS training datasets. Evaluation using this data-
base demonstrates the applicability of the proposed algo-
rithm to emerging codec technologies. On this database,
P.563 achieves R = 0.916 and ε = 0.218. The proposed
algorithm achieves R = 0.924 and ε = 0.207, a 10% im-
provement in correlation and a 5% decrease in root-mean-
square error.

4.1. A Note on Complexity

The computational complexity of the proposed algorithm is
mainly attributable to the time segmentation module. While
training the GMMs and the MARS mapping is somewhat in-
volved, this is performed offline and does not pose a serious
burden. The proposed algorithm depends only on seven fea-
tures while P.563 depends on over 50 parameters. Since all
of the processing modules in the proposed algorithm have
similarly complex blocks present in P.563, it is estimated
that the proposed algorithm uses roughly 15% of the load
required by P.563. More precise comparison figures are cur-
rently being investigated.

5. CONCLUSION

An enhanced non-intrusive speech quality estimation algo-
rithm is proposed. It has been shown that, by adding a
degradation reference model, measurement accuracy is en-
hanced and the GMM-based algorithm becomes more ro-
bust to certain distortion conditions. Further improvement
is attained when segmental SNR, used as a measure of the
amount of multiplicative noise present in the signal, is con-
sidered. The algorithm provides competitive quality esti-

mates relative to the current “state-of-art” algorithm, whilst
requiring considerably lower computational complexity.
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