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ABSTRACT

This paper describes an algorithm to decompose speech into tonal,

transient, and residual components. The algorithm uses an MDCT-

based hidden Markov chain model to isolate the tonal component

and a wavelet-based hidden Markov tree model to isolate the tran-

sient component. We suggest that the auditory system, like the visual

system, is probably sensitive to abrupt stimulus changes and that the

transient component in speech may be particularly critical to speech

perception. To test this suggestion, the transient component isolated

by our algorithm was selectively amplified and recombined with the

original speech to generate enhanced speech, with energy adjusted

to be equal to the energy of the original speech. The intelligibility

of the original and enhanced speech was evaluated in eleven human

subjects by the modified rhyme protocol. The word recognition rates

show that the enhanced speech can provide substantial improvement

in speech intelligibility at low SNR levels (8% at –15 dB, 14% at

–20dB, and 18% at –25 dB).

1. INTRODUCTION

The auditory system, like the visual system, may be sensitive to

abrupt stimulus changes, and the transient component in speech may

be particularly critical to speech perception. If this component can be

identified and selectively amplified, improved speech perception in

background noise may be possible. Yoo et al. employed a formant-

tracking filter to remove the dominant formant energy from speech

and they investigated the use of this component to enhance speech

in noise [1]. However, the resulting transient retained a significant

amount of energy during what would appear to be tonal regions of

the speech. In this paper, we define an alternative method to iden-

tify a transient component. The algorithm decomposes speech into

three components, based on the approach of Daudet and Torrésani

[2], as signal = tonal + transient + residual components. The mod-

ified discrete cosine transform (MDCT), which provides good esti-

mates of a locally stationary signal, was utilized to estimate the tonal

component. The wavelet transform, which provides good results in

encoding signals exhibiting abrupt temporal changes, was applied to

estimate the transient component.

Daudet and Torrésani were interested in improved speech cod-

ing, and they identified tonal and transient components using the in-

verse transform of a small number of most significant coefficients of

the MDCT and the wavelet transform, where the significant MDCT

and wavelet coefficients were determined by thresholds. They as-

sumed that the MDCT coefficients and the wavelet coefficients were

independent. However, both the MDCT coefficients and the wavelet
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coefficients can be expected to show statistical dependencies, namely

clustering and persistence properties.

Crouse et al. developed a probabilistic model to capture cluster-

ing and persistence properties of the wavelet transform coefficients

[3] using a hidden Markov tree (HMT) model to describe the sta-

tistical dependencies of the wavelet coefficients along and across

scale. They modeled the wavelet coefficients by a two-state, zero-

mean Gaussian mixture, where “large” states and “small” states were

associated with large variance and small variance, zero-mean Gaus-

sian distributions, respectively. They also introduced an upward-

downward algorithm for training the model.

Molla and Torrésani applied the HMT model of [3] to estimate

the transient component in a musical signal [4]. They associated

the transient state with a large-variance Gaussian distribution and

the residual state with a small-variance Gaussian distribution. They

used the statistical inference method [5], which is more robust to the

numerical underflow problem than the upward-downward algorithm

used in [3]. Daudet et al. proposed another probabilistic model to

estimate the tonal component in a musical signal [6]. They applied a

hidden Markov chain (HMC) model to describe the statistical depen-

dencies of the MDCT coefficients in each frequency index, modeling

the MDCT coefficients as a two-state, zero-mean Gaussian mixture.

A tonal state was associated with a large-variance Gaussian distri-

bution, and a non-tonal state was associated with a small-variance

Gaussian distribution.

Our algorithm [7] is a modification of [2] that avoids using thresh-

olds and can capture statistical dependencies between the MDCT co-

efficients and the wavelet coefficients by utilizing the HMC model

[6] and the HMT model [4], respectively. The Viterbi algorithm [8]

and the Maximum a Posteriori (MAP) algorithm [5], used to find

the optimal state distribution, are applied to determine the signifi-

cant MDCT and wavelet coefficients. The algorithm to decompose

the speech signal into different components is briefly reviewed in

Section 2. After identification, the transient component is selec-

tively amplified and recombined with the original speech to generate

enhanced speech. The intelligibility of the original speech and en-

hanced speech is evaluated by a modified rhyme test, using the pro-

tocol described in Section 3. The results are presented in Section 4,

and their implications are discussed in Section 5.

2. SPEECH DECOMPOSITION AND SPEECH
ENHANCEMENT

The algorithm decomposes speech into three different components

as signal = tonal + transient + residual. The tonal and transient com-

ponents are identified using a small number of coefficients of the

MDCT and the wavelet transform, respectively. Instead of running

the algorithm once, we run the algorithm twice, based on alternate
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projection [9], because we found that the residual component from

the first iteration appeared to retain significant tonal and transient

information.

2.1. Tonal Estimation

The original speech signal, xorig(t), sampled at 11.025 kHz, was

expanded by the MDCT. The half window length was set to 2.90

ms, equivalent to 32 coefficients. We found this length to be short

enough that the tonal component in each time frame can be reason-

ably assumed to be a locally stationary signal and long enough to

ensure sufficient frequency resolution. This window length also re-

duced the pre-echo effect [10]. The windows were half overlapped to

optimize frequency localization [2]. The MDCT coefficients in each

frequency index were applied to the HMC model, which is a two-

state mixture of two univariate Gaussian distributions. Each MDCT

coefficient was conditioned by one of two hidden states, represent-

ing tonal and non-tonal states. The tonal state was associated with

the large-variance Gaussian distribution, and the non-tonal state was

associated with the small-variance Gaussian distribution.

The initial parameters (weights, means, and variances) of the

mixture of two univariate Gaussian distributions in each frequency

index were estimated by the greedy EM algorithm [11]. The forward-

backward algorithm [8] was used to train the MDCT coefficients in

each frequency index until the local optimum corresponding to the

maximum likelihood was reached. Then, the Viterbi algorithm [8]

was used to find the optimal state distribution in each frequency in-

dex such that each MDCT coefficient was conditioned by either a

tonal or a non-tonal hidden state. All of the MDCT coefficients with

tonal hidden states were retained and those with non-tonal hidden

states were set to zero, providing an identification of the MDCT co-

efficients to construct the tonal component. The tonal component,

xtone(t), was calculated by the inverse transform of those MDCT co-

efficients, and the non-tonal component, xnont(t), was calculated by

subtracting the tonal component from the original signal, xnont(t) =
xorig(t) − xtone(t). This method to identify the tonal component

does not require a threshold.

2.2. Transient Estimation

The non-tonal component (of length N) was expanded by the wavelet

transform, using the Daubechies-8, the most nearly symmetric wavelet

[3]. The transform was limited to level (L = 7), resulting in K = N2−L

trees, where each tree was 11.61 ms long and corresponded to 128

coefficients.

The wavelet coefficients at each scale of each tree were applied

to the HMT model, which is a two-state mixture of two univariate

Gaussian distributions. Because there are small numbers of wavelet

coefficients in each scale of each tree, especially in the coarse scale,

the initial parameters of the mixture were calculated by applying the

greedy EM algorithm to all wavelet coefficients in that tree.

Each wavelet coefficient was conditioned by one of two hidden

states, representing a transient and a residual state. The transient

state was associated with a large-variance distribution, and the resid-

ual state was associated with a small-variance distribution. Each

hidden state models a random process defined by a coarse-to-fine

hidden Markov tree with a constraint. The constraint is that a tran-

sition from the residual state to the transient state is not allowed

(P{Schild = Transient|Sparent = Residual} = 0) [4].

The conditional upward-downward algorithm [5] was used to

train the wavelet coefficients in each scale of each tree until the lo-

cal optimum corresponding to the maximum likelihood was reached.

Then, the parameters were tied with the parameters in the corre-

sponding scale of its neighboring left and right trees, using robust

via tying [3].

The MAP algorithm [5] was applied to find the optimal state

distribution of each tree such that each wavelet coefficient was con-

ditioned by either a transient or residual hidden state. All of the

wavelet coefficients conditioned by transient hidden states were re-

tained. Those with residual hidden states were set to zero. The tran-

sient component, xtran(t), was obtained as the inverse wavelet trans-

form of the retained wavelet coefficients. The residual component,

xresi(t), was calculated by subtracting the transient component from

the non-tonal component, xresi(t) = xnont(t) − xtran(t).

For the second iteration, the residual component from the first

iteration was used in place of the original speech signal, and the al-

gorithm was repeated. The resulting tonal and transient components

are the summation of the tonal and the transient components from

the first and the second iterations, respectively. The resulting resid-

ual component is the residual component from the second iteration.

2.3. Speech Decomposition Results

Figure 1 illustrates speech decomposition results for the mono-syllablic

consonant-vowel-consonant (CVC) word “got”, spoken by a male

speaker. This word can be transcribed phonetically as /gAt/. It in-

cludes a voiced velar plosive stop consonant /g/, a vowel /A/, and a

voiceless alveolar plosive stop consonant /t/. The spectrogram of the

word is illustrated on top of the figure.

The tonal component, illustrated in the middle of the figure, in-

cludes most (99%) of the energy of the speech signal. This compo-

nent predominantly includes constant frequency information of the

first, second, third, and forth formant frequency. It also includes con-

sonant hubs of the /t/ release, that appear in the high frequency range

around 4-5 kHz from 0.42 to 0.45 sec.

The transient component, illustrated at the bottom of the figure,

includes 1% of the total energy. It includes the /g/ release and the

start of /t/ release, shown as the vertical ridges in the spectrogram at

approximately 0.02 sec and 0.42 sec, respectively. It also includes

most of the /t/ release, which appears as a noise pattern in the high

frequency range from 0.42 sec to the end of the word. In addition,

it nicely includes formant transitions from the /g/ release into the

first, second, third, and the forth formants of the vowel /A/ as well as

transitions around the end of the vowel. For this word, the residual

component was very small including approximately 0.001% of the

total energy.

2.4. Speech Enhancement

Enhanced speech was generated by xenha(t) = a(xorig(t)+b·xtran(t)),

where xenha, xorig, and xtran represent the enhanced, original, and

transient speech, respectively. a is a factor to adjust the energy of

the original and the enhanced speech to be the same. b is the tran-

sient amplification factor, chosen to be 12, based on a preliminary

evaluation from factors 1 to 15. Smaller factors had little effect on

the words, and larger factors introduced distortion.

Figure 2 illustrates the effects of the enhancement process on the

word “got” /gAt/ in the time domain. The enhanced speech shows

more prominent /g/ release, transitions from the /g/ release into and

out of the vowel formants, and the beginning and the release /t/ than

the original speech.
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3. PSYCHOACOUSTIC TEST METHODS

Speech material was decomposed into components using the algo-

rithm described in the previous section, and the transient component

of each word was used for enhancement. The modified rhyme proto-

col of [12], developed from [13] and [14], was used to compare the

intelligibility of enhanced speech to original speech.

The protocol was performed on eleven volunteer subjects with

negative otologic histories and having hearing sensitivity of 15 dB

HL or better by conventional audiometry (250 - 8 kHz). Fifty sets of

rhyming monosyllabic CVC words (6 words per set for a total of 300

words), were recorded by a male speaker [13]. Among them, 25 sets

differ in their initial consonants and 25 sets differ in their final con-

sonants. Subjects sat in the sound-attenuated booth and were asked

to identify a target word from a list of six words. The target word

appeared on the computer screen and remained until all of six words

were presented. These six words were presented at one of six SNR

levels (–25, –20, –15, –10, –5, and 0 dB) using speech-weighted

background noise through the right headphone. The subjects were

asked to click the mouse as soon as they thought that they heard the

target word. The subjects could not change an answer and could not

select a previous word. The subjects were monitored during the test

by skilled examiners under supervision of a certified clinical audiol-

ogist, and all subject responses were saved on the computer.

The modified rhyme protocol was composed of a training and

SNR Mean difference SD difference 95% CI difference p-value

–25 dB 17.50 12.93 8.77 ∼ 26.14 0.0012

–20 dB 13.82 20.89 –0.22 ∼ 27.85 0.0530

–15 dB 7.64 11.24 0.09 ∼ 15.19 0.0479

–10 dB 3.64 15.95 –7.08 ∼ 14.35 0.4669

–5 dB –0.73 14.51 –10.48 ∼ 9.02 0.8713

0 dB –2.55 14.56 –12.33 ∼ 7.24 0.5749

Table 1. Differences (enhanced speech – original speech) of means,

standard deviations (SDs), 95% confidence intervals (CIs), and p-

values of word recognition scores
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Fig. 3. Average percent correct responses between original (dashed

line) and enhanced speech (solid line)

the main test sessions. The training session made the subjects famil-

iar with the test. The main session included 300 trials — 150 trials of

the original speech and 150 trials of the enhanced speech. The 150

trials of the original and enhanced speech were equally distributed

over the 6 SNR levels, giving 25 trials of original speech and 25 tri-

als of enhanced speech at each level of background noise. The target

words were randomly chosen from the 300 rhyming words. Once a

chosen target word was presented, it was removed from future se-

lections such that the same word did not occur as a target more than

once.

4. RESULTS

The average percent correct responses were calculated by the sub-

ject’s correct responses divided by the total numbers of stimuli. Means,

standard deviations (SDs), 95% confidence intervals (CIs), and p-

values of the paired-sample difference at each SNR level are sum-

marized in Table 1. The results suggest that there are substantial

difference in speech perception between the original and enhanced

speech at –25dB, –20dB, and –15dB with mean differences 17.50%,

13.82%, and 7.64%, respectively. The CI differences do not include

zero at –25dB (p-value = 0.0012) and at –15dB (p-value = 0.0479).

The CI difference at –20dB includes zero (p-value = 0.0530), which

probably occurred because of high variations in subjects.

Figure 3 shows the percent correct responses averaged for each

speech type between original (dashed line) and enhanced speech
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Fig. 4. Average percent correct responses according to phonetic el-

ements in initial (�) and final (�) positions between original and

enhanced speech

(solid line) with group 95% CIs. The average percent correct re-

sponses of the original and enhanced speech increase with increasing

SNR levels, and the advantage provided by enhancement decreases.

Confusions of consonantal elements in the initial and final posi-

tions were also analyzed. The motivation of this analysis is to reveal

the degree of improvement in identifying various consonantal ele-

ments of the enhanced speech compared with the original speech.

Because the 300 rhyming words are not phonetically balanced [13],

only the initial and final consonants with high frequency of occur-

rences, ie more than or equal to 20, were used in this analysis.

Figure 4 illustrates the average percent correct responses of con-

sonantal elements in the initial (11 consonants) and in the final posi-

tions (9 consonants) of original speech and of enhanced speech at –

25dB, –20dB, and –15dB. These values were calculated by the num-

bers of correct responses divided by the total number of responses.

Data points above the 45◦ line indicate elements that were recog-

nized better in enhanced speech, and data points below the line in-

dicate elements that were recognized better in original speech. Only

1 consonantal element in initial position (/g/) and 1 consonantal ele-

ment in final position (/k/) were recognized less successfully in en-

hanced speech than in original speech. These are both plosive con-

sonants.

5. DISCUSSION

We introduced a method to identify the transient information in speech

using MDCT-based hidden Markov chain and wavelet-based hidden

Markov tree models. The perception of the enhanced speech in noise

is better than that of the original speech for most of SNR levels (–25,

–20, –15, and –10 dB). These results suggest that the transient com-

ponent is important in speech perception and emphasis of this com-

ponent may provide an approach to enhance intelligibility of speech

signal, especially in noisy environment.

The confusion analysis suggests that most consonants are con-

sistently more intelligible in enhanced speech. Two plosive conso-

nants were exceptions. The 300 rhyming words are not phoneti-

cally balanced [13] and the modified rhyme protocol [12], based on

a word-monitoring task [14], does not force the subjects to make a re-

sponse to every stimulus. More subjects would be required in order

to analyze confusions effectively. This analysis of confusions was

presented as a preliminary study to reveal the degree of improvement

in identifying various consonantal elements of the enhanced speech

compared with the original speech. A more complete analysis might

suggest improvement in the algorithm.
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