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ABSTRACT

In this paper, we propose a novel model for estimating the

quality of speech without the reference speech information.

The proposed auditory non-intrusive quality estimation plus

(ANIQUE+) model is a perceptual model simulating the func-

tional role of human auditory system, and employs improved

modeling of quality estimation by statistical learning meth-

ods. Experimental evaluation demonstrated that the perfor-

mance of the ANIQUE+ model is significantly superior to

that of the current ITU-T standard recommendation P.563 on

34 different subjective mean opinion score (MOS) databases

– the averaged correlation between subjective and objective

quality scores is about 0.97 for ANIQUE+, whereas P.563

shows 0.87 averaged correlation.

1. INTRODUCTION

Non-intrusive estimation of speech quality is a challenging

problem in that it estimates the quality of speech transmit-

ted over telecommunication networks without using the refer-

ence speech information, in contrast to intrusive models such

as ITU-T P.862 PESQ [1] which compare reference and de-

graded speech signals in estimating the quality of degraded

speech. Recently in the ITU-T, the standard recommenda-

tion P.563 has been adopted for non-intrusive estimation of

speech quality as the need for monitoring the speech quality

of in-service networks is rapidly growing where no reference

speech signal is available [2].

However, ITU-T P.563 model demonstrates very limited

performance. The averaged correlation between subjective

mean opinion score (MOS) and objective quality estimated by

P.563 is about 0.88 even for the 24 known MOS test databases

used in the development of the model, whereas ITU-T P.862

shows 0.93 correlation for the same task [3]. An experiment

has also been reported that the performance of P.563 is quite

unsatisfactory for some unknown MOS tests (MOS test data

not included in the model development) containing selectable

mode vocoder (SMV) conditions (the correlation is as low as

0.7) [4]. In order to use a non-intrusive quality estimation

model in real applications, higher performance closer to the

performance level of P.862 is required.

The authors proposed auditory non-intrusive quality esti-

mation (ANIQUE) model previously, which is based on the

temporal envelope representation of speech motivated by the

functional roles of human auditory system [5, 6]. In this pa-

per, we presents an enhanced version of ANIQUE model,

ANIQUE+, in which improved modeling of quality estima-

tion is employed based on statistical learning method. Experi-

mental evaluation demonstrates the performance of ANIQUE+

model is significantly higher than the ITU-T P.563.

2. ANIQUE+ MODEL
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Fig. 1. Block diagram of the ANIQUE+ model.

Fig. 1 shows the overall block diagram of the proposed

ANIQUE+ model. The overall objective distortion Dx, tak-
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ing the value between 0 and 1, of the speech signal x(n) is

estimated by the sum of the overall frame distortion DF , the

mute distortion DM and the non-speech distortion DN :

Dx = DF + DM + DN . (1)

The distortion Dx is then mapped onto subjective MOS scale

to yield objective speech quality Qx:

Qx = −3.5min(Dx, 1) + 4.5 (2)

assuming the maximum and minimum value of quality are 4.5

and 1.0, respectively.

2.1. Level Normalization & Receive-Side Modified IRS
Filtering

The level of speech signal is first normalized to -26 dBov us-

ing the P.56 speech voltmeter [7]. Then the modified interme-

diate reference system (IRS) receive filter is applied to reflect

the characteristics of the handset used in listening tests [8].

2.2. Cochlear Filterbank and Temporal Envelope

Simulating the first stage of human auditory system, the nor-

malized and IRS-filtered speech signal, s(n), is filtered by a

bank of critical-band filters, hk(n), k = 1, 2, . . . , Ncb, where

hk(n) is the impulse response of the k-th critical-band filter

and Ncb denotes the number of critical bands. The critical

band signal at the k-th channel is represented as

sk(n) = s(n) ∗ hk(n). (3)

The characteristic frequency of the filters in cochlear filter-

bank ranges from 125 Hz to 3500 Hz, and the bandwidth of

each critical-band filter is characterized by equivalent rectan-

gular bandwidth (ERB) [9]:

ERBk = Fk/Qear + Bmin (4)

where Fk is the characteristic frequency of the k-th critical-

band filter in Hertz, and Qear and Bmin are set to 9.26449

and 24.7, respectively.

2.3. Modulation Filterbank and Analysis

In addition to the existence of frequency selectivity at periph-

eral level, it is believed that there is a set of modulation de-

tectors, each of which is tuned to a specific modulation fre-

quency, at the central level of the auditory system [10]. This

idea was adopted in the ANIQUE model [5, 6], and then in

the proposed ANIQUE+ model. For each critical band, the

temporal envelope of sk(n) is obtained by

γk(n) =
√

s2
k(n) + ŝ2

k(n) (5)

where ŝk(n) is the Hilbert transform of sk(n). The tempo-

ral envelope is then multiplied by the 256 ms Hamming win-

dow, which is shifted by 64 ms every frame, in order to obtain

γk(m;n), which is the temporal envelope for the k-th critical

band at the m-th frame. The modulation spectrum for each

critical band is then estimated by Fourier transform as

Γk(m, f) = |F {γk(m;n)} | (6)

where f represents modulation frequency.

The modulation spectrum is grouped into M bands by a

modulation filterbank {W (i, f)|i = 1, 2, . . . ,M}, and one

can obtain modulation band power as

Ψk(m, i) =
∫

Γ2
k(m, f)W 2(i, f)df, (7)

where the modulation filterbank is a set of M equal-Q filters

(Q = 2) implemented in modulation frequency domain, and

its frequency response can be found in [6].

In [6], the articulation-to-nonarticulation ratio (ANR) for

the k-th critical band is defined as

Λk(m) =
Ψk,A(m)
Ψk,N (m)

(8)

where the numerator is the average articulation power reflect-

ing signal components relevant to natural human speech, and

the denominator is the average nonarticulation power repre-

senting perceptually annoying distortions produced at the rates

beyond the speed of human articulation systems [6]. The

ANR is aggregated across all the critical bands to compute

the frame quality.

The introduction of ANR provides simple yet effective

method for frame quality estimation, but it simplifies the hu-

man quality perception and ignores the interaction across crit-

ical bands, which is believed to exist especially at the higher

level of auditory pathway. As the detailed mechanism of

quality perception by human listeners is not known yet, data-

driven approach is employed in the proposed ANIQUE+ in

which the objective model learns the relationship between

speech signals and their associated quality ratings. Instead

of using ANR, the feature vector for frame distortion model

in the ANIQUE+ consists of the articulation power, nonartic-

ulation power and critical band power, resulting in a (3Ncb)-

dimensional vector at the m-th time frame:

Ξ(m) = [ΨA(m);ΨN (m); log Γ(m, 0)] (9)

where ΨA(m), ΨN (m), and Γ(m, 0) are vector representa-

tions of Ψk,A(m), Ψk,N (m), Γk(m, 0), respectively.

2.4. Frame Distortion Model

In the frame distortion model, the overall frame distortion DF

is modeled as

DF = DS + DB . (10)
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Here, DS is the distortion in speech obtained by accumulating

frame distortions for active speech over time and then normal-

izing by the total number of active speech frames TS as

DS =
1
TS

∑
m∈S

χ(m) (11)

where χ(m) is the output of frame distortion model ranging

from 0 to 1 at the m-th frame. DB is the audible distortion in

background noise and is estimated as

DB =
1

TB

∑
m∈B

{αF (Penv(m) − Pth) + βF }χ(m) (12)

where Penv(m) is the DC-value of modulation power spec-

trum at the m-th frame, Pth is the threshold for audible back-

ground noise, TB is the number of frames for background

noise, and αF and βF are weighting factors.

The frame distortion model used in the ANIQUE+, λF ,

is the multi-layer perceptron with one hidden layer, and its

output is expressed as

χ(m) = g(
∑

j

Wjg(
∑

k

wjkξk(m))) (13)

where ξk(m) is the k-th element of input feature vector Ξ(m),
wjk and Wj are synaptic weights for the input and hidden

layer, respectively, and g(x) is the nonlinear sigmoid func-

tion. Synaptic weights are obtained by error back-propagation

learning [11]. Fig. 2 illustrates how the speech distortion DS

is estimated.
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Fig. 2. Frame distortion estimation model.

2.5. Mute Detection and Impact Model

Interruption such as mutes is the one of most common dis-

tortions observed as packet loss or frame erasure in modern

wireless and VoIP networks. The purpose of the model in

this section is to detect unnatural mutes in speech signals and

estimate their impact on perceived quality.

2.5.1. Detection of Unnatural Stops

At every possible candidate time frame for the beginning of

mute, lM , where the frame energy drops abruptly, a feature

vector is extracted for two time instances, lM and 15 ms prior

to lM , with the analysis length of 30 msec. The feature vector

includes the 12-th order Mel-Frequency Cepstral Coefficients

(MFCC), and voicing factor, which indicates how much peri-

odic components a segment of speech contains. A neural net-

work detector (multi-layer perceptron) with one output neu-

ron was trained to detect unnatural abrupt stops on training

database.

2.5.2. Detection of Unnatural Starts

When frames start to be erased during silence even before a

speech activity starts, the beginning of mute cannot be de-

tected. In this case, only the end of mute exists and is termed

‘unnatural abrupt start’. Similar to abrupt stop detection, a

feature vector is extracted for two time instances, lM and 15

ms after lM , where lM is the candidate time frame of the be-

ginning of unnatural abrupt start. The feature vector includes

spectral centroid defined as

s =
∑

k k|X(k)|∑
k |X(k)| (14)

where |X(k)| is the FFT magnitude of a speech frame, as well

as MFCCs and voicing factors. A neural network detector was

trained to detect unnatural abrupt starts on training database.

2.5.3. Impact of Mutes

Recent experiments revealed that humans can assess the qual-

ity of speech continuously over time and there’s some recency

effects in perceived overall quality [12]. This is related to bi-

ological short-term memory and means that recent events can

play more role than past ones. In the proposed ANIQUE+,

the impact of mutes is modeled as the combination of abrupt

instantaneous distortion followed by decays simulating short-

term memory effects.

2.6. Non-Speech Detection and Impact Model

This module detects very annoying non-speech activities that

may occur when bit information within a packet or frame is

distorted during transmission but not detected at the speech

decoder side, for example. In the ANIQUE+ model, the time-

derivative of frame power is used to detect non-speech activ-

ities and its contribution to objective distortion is estimated

proportional to the energy of non-speech activities.

3. EXPERIMENTAL RESULTS

The proposed ANIQUE+ model was developed using the 24

MOS test databases (speech files and their associated MOS
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Table 1. Performance of the ANIQUE+ model on two differ-

ent data sets. For the performance metric, per-condition cor-

relation coefficient (ρ) and root mean squared error (RMSE)

of MOS after 3rd-order monotonic polynomial regression are

used.

(a) 24 known MOS tests

ANIQUE+ P.563 P.862

ρ 0.9762 0.8787 0.9300

RMSE 0.1514 0.3714 0.2707

(b) 10 unknown MOS tests

ANIQUE+ P.563 P.862

ρ 0.9388 0.8480 0.9528

RMSE 0.2258 0.3045 0.1795

values), which are the same data used in the ITU-T P.563 se-

lection phase and consist of about 16 hours of speech covering

wide range of telecommunication applications. To demon-

strate the validity of the model further, 10 unknown MOS

test databases of 34 hours os speech were used which have

never been utilized in training of the model. They include

SMV characterization databases, low bit rate CELP codec

tests, G.728 characterization tests, and VoIP conditions.

Table 1 shows the performance of the ANIQUE+ model

in comparison with ITU-T standard recommendations, P.563

and P.862. On the 24 known MOS tests, which were used in

the training of both ANIQUE+ and P.563, ANIQUE+ shows

significantly higher performance than P.563 and even higher

than P.862, which is an intrusive model utilizing reference

source speech as well as degraded speech signals. On the 10

unknown MOS test, the performance of ANIQUE+ is much

superior to that of P.563, and the performance gap between

intrusive and non-intrusive models has been extensively re-

duced. The averaged correlation across all 34 databases is

0.97 for ANIQUE+ and 0.87 for P.563.

4. CONCLUSIONS

This paper presents an enhanced method in objective speech

quality assessment. The proposed ANIQUE+ model is based

on the functional role of human auditory system in rating the

quality of speech, and consists of critical-band filters, modu-

lation filterbank, articulation analysis, and three models for

estimating perceptual distortion in speech signals. In con-

trast to previous ANIQUE model, statistical learning based

on training data is employed instead of establishing models

based on insufficient knowledge and assumptions, resulting

in significantly better performance than the current ITU-T

standard recommendation P.563 not only for the data used in

training but also for unknown data sets.
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