
ON THE USE OF LIME DEREVERBERATION ALGORITHM IN AN ACOUSTIC
ENVIRONMENT WITH A NOISE SOURCE

Marc Delcroix † ‡
, Takafumi Hikichi †

and Masato Miyoshi † ‡

†NTT Communication Science Laboratories, NTT Corporation
2-4, Hikaridai, Seika-cho (Keihanna Science City), Soraku-gun, Kyoto 619-0237 Japan

‡ Graduate School of Information Science and Technology, Hokkaido University,
Kita 14, Nishi 9, Kita-ku, Sapporo, 060-0814 Japan

ABSTRACT

This paper addresses the speech dereverberation problem in the pres-
ence of a noise source. We show that the previously presented LInear-
predictive Multi-input Equalization (LIME) algorithm can achieve
both dereverberation and noise reduction. Experiments show that,
for a reverberation time of 0.2 seconds, precise dereverberation is
possible in the presence of a colored noise source of SNR of 5 dB,
with a dereverberation of the room impulse response by more than
20 dB.

1. INTRODUCTION

Room reverberations degrade the characteristics and the audible qual-
ity of speech recorded by distant microphones. It is a severe problem
for applications such as automatic speech recognition, hearing aids
and hands-free telephony [1]. The dereverberation problem con-
sists in recovering a target speech from observed reverberant signals.
Much research have been undertaken on the dereverberation problem
using both single [2] and multi-microphone techniques [3]. How-
ever, it seems that there have been few reports of dereverberation
working successfully in noisy conditions [4], [5].

Dereverberation and noise reduction using MINT [6] has been
proposed [4]. If the sources are spatially independent and each
source is temporally independent and identically distributed (i.i.d.),
multi-channel inverse filters can be blindly obtained, and these filters
would perform both dereverberation and noise reduction. However,
the temporally i.i.d. hypothesis does not hold for speech-like signals.
When applied to speech, such methods degrade the speech charac-
teristics by causing an excessive whitening of the recovered signal.

We have already proposed the LInear-predictive Multi-input Equal-
ization (LIME) algorithm to solve the whitening problem [7] [8]
[9]. In [9], we showed that LIME could achieve the precise derever-
beration of a single speech signal. In this paper, we expand the LIME
algorithm for performing both dereverberation and noise reduction
in a multi-source scenario. We also present results for experiment of
speech dereverberation in the presence of a colored noise source.

2. PRINCIPLES

We consider the acoustic system shown in Fig. 1, with P micro-
phones and two sources; a target speech signal, s1(n), and a noise
source, s2(n). The target signals observed at the microphones are
degraded by the noise source and reverberation. The microphone
signals, uj(n), can be expressed as:

uj(n) =

M−1�
k=0

h1,j(k)s1(n − k) +

M−1�
k=0

h2,j(k)s2(n − k). (1)
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Fig. 1. Acoustic system. s1(n) is the target signal, s2(n) is a noise
source, hi,j(n) is the room impulse response between the ith source
and the jth microphone and uj(n) is the signal observed at the jth

microphone.

Here, we expand the previously reported LIME algorithm to re-
cover a target signal s1(n) precisely from the P observed signals
uj(n), where j = 1, . . . , P . First we calculate filters which linearly
predict the microphone signal, u1(n), from the past samples of P
microphone signals uj(n) (j = 1, . . . , P ). These filters would can-
cel out the room reverberation and suppress the noise signal s2(n),
if we assume that the target source is closer to microphone 1 than the
noise source, i.e. h1,1(0) �= 0 and h2,1(0) = 0 and that the noise
source is closer to another microphone [7]. However, the filters de-
grade the target-source characteristics causing excessive whitening.
In the second step we estimate the target-source characteristics to
recover the target signal precisely.

2.1. Hypotheses

We construct the following hypotheses:
• First, we assume that the source signals si(n), i = 1, 2, are

modeled by autoregressive (AR) processes applied to white
noise ei(n). The Z-transform of the AR process of the ith

source is 1/ai(z) where ai(z) is an AR polynomial of order
Ni given by:

ai(z) = 1 − {ai,1z
−1 + . . . + ai,Ni

z−Ni}. (2)

Using a matrix formulation we can write [10]:

si(n) = C
T
i si(n − 1) + ei(n), (3)

where si(n) = [si(n), . . . , si(n − (Ni + 1))]T , Ci is the
Ni × Ni companion matrix defined as:

Ci =

�
�������

ai,1 1 0 . . . 0
ai,2 0 1 . . . 0

...
...

. . .
. . .

...
...

...
. . . 1

ai,Ni
0 . . . . . . 0

�
�������

, (4)
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and ei(n) = [ei(n), 0 . . . , 0]T , i = 1, 2.
We can write an equation for the sources as:

s(n) = C
T
s(n − 1) + e(n), (5)

where s(n) =
�
sT
1 (n), sT

2 (n)
�T

, C =

�
C1 0
0 C2

�
, and

e(n) =
�
eT
1 (n), eT

2 (n)
�T

.

Moreover, we assume that noise source s2(n) is stationary.

• We model the room transfer functions by using time invariant
polynomials that do not share common zeros.
Using a matrix form, we can re-write Equation (1) as:

u(n) = H
T
s(n). (6)

where u(n) = [uT
1 (n), . . . ,uT

P (n)]T ,
uj(n) = [uj(n), . . . , uj(n − (L − 1))]T , H is a 2(M +L−
1) × PL convolution matrix expressed as

H =

�
H1,1 . . . H1,P

H2,1 . . . H2,P

�
,

Hi,j =

�
�����

hi,j 0 . . . 0

0 hi,j

. . .
...

...
. . .

. . . 0
0 . . . 0 hi,j

�
����	,

hi,j = [hi,j(0), . . . , hi,j(M − 1)]T , i = 1, 2 and j =
1, . . . , P .

2.2. LIME for multi-sources

Conventional LIME is expanded hereafter to perform both derever-
beration and noise reduction in a multi-source scenario. Let us con-
sider that the first microphone signal, u1(n), can be linearly pre-
dicted from the past samples of P microphone signals uj(n) (j =
1, . . . , P ). The prediction error can be defined as [11]:

ê(n) = u1(n) − u
T (n − 1)w (7)

where w is a prediction filter set of length PL. Minimizing the mean
square value of the prediction error gives us:

w = R
+
r (8)

where A+ is the Moore-Penrose generalized inverse of matrix A [12],
R = E{u(n−1)uT (n−1)} is the covariance matrix, r = E{u(n−
1)u1(n)} is the correlation vector and E{} is an expectation oper-
ator. By replacing the scalar u1(n) in r with the observation vector
uT (n), we define the prediction matrix, Q, as:

Q � R
+
R̃, (9)

where R̃ = E{u(n − 1)uT (n)} is a one step shifted covariance
matrix. By definition, the first column of Q is equivalent to the
prediction filter set w. Using Equation (6), and the fact that the
covariance matrix of the source signals may be considered positive
definite, we can express the prediction filter set and prediction matrix
as [8]:

Q = H
T (HH

T )−1
CH, (10)

and
w = H

T (HH
T )−1

Ch1, (11)

where h1 = [hT
1,1,h

T
2,1]

T is the first column of H. Using Equations
(5), (6) and (11) the prediction error becomes:

ê(n) = s
T (n)h1 − s

T (n − 1)Hw

= s
T (n)h1 − s

T (n − 1)HH
T (HH

T )−1
Ch1

= (sT (n) − s
T (n − 1)C)h1

= e
T (n)h1

= h1,1(0)e1(n) + h2,1(0)e2(n). (12)

If we assume that the target source is closer to microphone 1 than
the noise source, i.e. h1,1(0) �= 0 and h2,1(0) = 0, the prediction
error becomes:

ê(n) = h1,1(0)e1(n). (13)

Equation (13) shows that the effect of room reverberation is can-
celed out as well as the interference coming from the noise source.
However, the obtained signal is whitened.

For a single source, the target signal could be recovered by filter-
ing the prediction error with an estimate of the AR polynomial of the
target signal [8]. Such an estimate was obtained from the character-
istic polynomial of the prediction matrix. Indeed, we proved that the
characteristic polynomial of the prediction matrix Q was equivalent
to the characteristic polynomial of the companion matrix, C:

fc(Q, λ) = fc(C, λ), (14)

where fc(A, λ) = det(A − λI) is the characteristic polynomial of
matrix A. With a single source, the characteristic polynomial of C
is equivalent to the AR polynomial of the single source.

When there are two sources, however, the characteristic polyno-
mial of C is the product of the AR polynomials of the two sources.
The estimated AR polynomial â(z) therefore becomes [12]:

â(z) = fc(Q, λ)

= fc(C, λ)

= fc(C1, λ)fc(C2, λ)

= a1(z)a2(z). (15)

If such a biased AR polynomial were used, the recovered signal
would be degraded. To avoid such degradation, we propose estimat-
ing the noise AR polynomial, a2(z), and using it to filter the LIME
output. Note that if the noise source is white, a2(z) = 1 and â(z) is
equivalent to the AR polynomial of the target source.

2.3. Estimation of noise AR polynomial

With a colored noise source, the noise AR polynomial should be es-
timated. A technique for extracting the target source AR polynomial
from Equation (15) has been proposed [7]. The method first esti-
mates the room transfer functions h1,i(z) from the cross-correlation
between the prediction error ê(n) and the output of a microphone
ui(n). The AR polynomial of the target source, a1(z), is then ob-
tained as the greatest common divisor of the estimate of h1,i(z) and
the AR polynomial â(z) shown in Equation (15). However, the com-
putation of the greatest common divisor is hard to perform in prac-
tice.

To avoid such complex computation, in this paper, we estimate
the noise AR polynomial by using the LIME algorithm when the
speaker is silent. In that case, only the noise source will be active and
the problem is simplified to a single source dereverberation problem.
LIME can thus be used to estimate the noise AR process a2(z) with-
out bias. However, such techniques would require the use of voice
activity detection [13].
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Fig. 2. Schematic diagram of proposed method.

2.4. Algorithm of proposed method

Figure 2 is a schematic diagram of the proposed method. The algo-
rithm can be summarized as follows:

1. First, an estimate of the noise AR polynomial â2(z) is ob-
tained using the LIME algorithm when only the noise source
is active.

2. Prediction matrix Q is obtained using Equation (9).

3. The prediction error is calculated using Equation (7) and the
prediction filter set, w, given by the first column of matrix Q.

4. The target signal is recovered by filtering the prediction error
with â2(z)

â(z)
, where â(z) is given by the characteristic polyno-

mial of matrix Q.

3. EXPERIMENT

We used the proposed method for the dereverberation of 4 seconds of
reverberant speech in the presence of a colored noise source. The ex-
perimental conditions are summarized in Table 1. The room impulse
responses were generated by the Image method [14] and the rever-
beration time was 0.2 sec. The distance between the speaker and
microphone 1 and the distance between the noise source and micro-
phone 1 were 1.67m and 1.89m, respectively. The computational
complexity for this simulation is about the same as the complexity
involved in performing single-source dereverberation in a room with
a reverberation time of 0.4 sec. The signal to noise ratio (SNR) at

Table 1. Experimental conditions.
Order of a2(z) 30
Room impulse response duration 0.2 sec
Data length 4 sec
Sampling frequency 8 kHz
Room size 8m × 5m × 3m
Number of microphones 8

the microphone was 5 dB. In the experiment, we used a 1 second
reverberant noise observation to evaluate the AR polynomial of the
noise with the LIME algorithm.

Figure 3 plots the energy decay curve of an original and equal-
ized room impulse response. The equalized impulse response was
obtained by filtering the original room impulse responses between
the target source and the microphones, with the prediction filter set,
w, and the estimated source AR process, â2(z)

â(z)
. We observed that

using the proposed algorithm, the original room impulse response
was attenuated by more than 20 dB. Figure 4 (a)-(b)-(c)-(d) plot
the waveforms and spectrograms of the target signal, the reverber-
ant signal, the observed signal and the signal processed with LIME,
respectively. The Itakura-Saito Distance (ISD) [15] was used to
measure the speech quality. The recovered signal is composed of
the dereverberated speech and interference coming from the noise
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Fig. 3. Energy decay curve of original (solid line) and equalized
(dotted line) room impulse response.

source. Figure 4 (b)-(d) reveal that the room reverberation effect is
successfully eliminated after processing with the proposed method.
To evaluate the dereverberation performance, we used the signal to
distortion ratio (SDR) defined as:

SDR = 10 log10

� �
|s1(n)|2�

|s1(n) − d̂1(n)|2

�
, (16)

where s1(n) is the target signal and d̂1(n) is the dereverberated sig-
nal obtained by applying the prediction filters and the estimated AR
process to the reverberant speech. The target signal is well recov-
ered with an SDR value of 21 dB. As shown in Table 2, similar re-
sults could be obtained for female and male speakers for input SNR
value of 5 and 10 dB. In theory, as long as the post-processing filter,
â2(z)
â(z)

shown in Fig. 2, is estimated precisely, the dereverberation
performance should not be affected by the SNR at the microphone.

Table 2. Value of the SDR for a female and a male speaker.
Input SNR 5 dB 10 dB
SDR Female 21 dB 21 dB

Male 19 dB 21 dB

In Fig. 4(d), we observe the presence of additive stationary col-
ored noise coming from the interference from the noise source. To
evaluate the noise reduction performance, we calculate the SNR de-
fined as:

SNR = 10 log10

� �
|s1|

2�
|s1(n) − ŝ1(n)|2

�
, (17)

where ŝ1(n) is the recovered signal obtained with LIME. The SNR
value is 11 dB. If prediction filter set w were precisely calculated,
the prediction error ê(n) should be exactly equivalent to the target
speech generating white noise e1(n), as shown in Equation (13).
However, due to numerical errors in the calculation of the predic-
tion filters, the prediction error contains some remaining noise. In
practice, the noise is reduced but not completely eliminated.

To reduce the interference further, we used spectral subtraction
based noise reduction [16]. The target signal is then better recov-
ered, as seen in Fig. 4(e), with an SNR value of 13 dB.

4. CONCLUSION

In this paper, we presented an extension of the LIME dereverberation
algorithm for use in the presence of a noise source. We showed that
if a microphone is closer to the target source than to the noise source
and another microphone is closer to the noise source than to the tar-
get source, the LIME algorithm could be directly applied. For a col-
ored noise source, however, the recovered signal would suffer from
distortion caused by the noise AR process. We remove such distor-
tion by estimating the noise characteristics by applying the LIME
algorithm to noise only observations. The proposed method could
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achieve both precise dereverberation and suppression of the interfer-
ence coming from the noise source. The performance of the interfer-
ence suppression could be improved further by using a conventional
noise reduction technique as post-processing.
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(a) Target signal
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(b) Reverberant signal

0 0.2 0.4 0.6 0.8

−0.04

−0.02

0

0.02

0.04

Time (sec)

A
m

pi
ltu

de

Time (sec)

F
re

qu
en

cy
 (

H
z)

0.2 0.4 0.6
0

1000

2000

3000

4000

(c) Observed signal (ISD 2.04)

0 0.2 0.4 0.6 0.8

−0.04

−0.02

0

0.02

0.04

Time (sec)

A
m

pi
ltu

de

Time (sec)

F
re

qu
en

cy
 (

H
z)

0.2 0.4 0.6
0

1000

2000

3000

4000

(d) Signal processed with LIME (ISD 1.60)
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(e) Signal processed with LIME and noise reduction (ISD 1.36)

Fig. 4. Waveforms and spectrograms of target signal, reverber-
ant signal, observed signal, signal processed with LIME and signal
processed with LIME and noise reduction.
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