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ABSTRACT

This paper proposes a new single channel speech dereverberation

method, in which the features of source signals and room acous-

tics are represented by probabilistic density functions (pdf) and the
source signals are estimated by maximizing a likelihood function

defined based on the pdfs. Two types of pdfs are introduced for

the source signals, based on two essential speech signal features,

harmonicity and sparseness, while the pdf for the room acoustics
is defined based on an inverse filtering operation. The EM algo-

rithm is used to solve this maximum likelihood problem efficiently.

The resultant algorithm elaborates the initial source signal estimate

given solely based on its source signal features by integrating them

with the room acoustics feature through the EM iteration. The ef-
fectiveness of the present method is shown in terms of the energy

decay curves of the dereverberated impulse responses.

1. INTRODUCTION

Speech signals captured by a distant microphone in an ordinary

room inevitably contain reverberation, which has detrimental ef-
fect on the perceived quality and intelligibility of the speech sig-

nals and degrades the performance of automatic speech recogni-

tion (ASR) systems. It is reported, for example, that the recogni-

tion performance cannot be improved when the reverberation time
is longer than 0.5 sec even when using acoustic models that have

been trained under a matched reverberant condition [1]. Derever-

beration of the speech signal is essential, whether it is for high

quality recording and playback or for ASR.
Although blind dereverberation of a speech signal is still a

challenging problem, several techniques have recently been pro-

posed. Some researchers have proposed techniques that decorre-

late the observed signal while preserving the correlation within a
short time segment of the signal [2, 3]. Others proposed methods

that estimate and equalize the poles in the acoustic response of the

room [4, 5]. Also proposed were two new approaches based on es-

sential features of speech signals, namely harmonicity (Harmonic-

ity based dERverBeration, HERB [6]) and sparseness (Sparseness
Based Dereverberation, SBD [7]). These methods make exten-

sive use of the respective speech features in their initial estimate

of the source signal. The initial source signal estimate and the ob-

served reverberant signal are then used together for estimating the
inverse filter for dereverberation, which allows further refinement

of the source signal estimate. To obtain the initial source esti-

mate, HERB utilizes an adaptive harmonic filter, and SBD utilizes

a spectral subtraction based on minimum statistics. It has been

shown experimentally that these methods greatly improve the ASR

performance of the observed reverberant signals if the signals are

sufficiently long.
Although HERB and SBD effectively utilize speech signal fea-

tures in obtaining dereverberation filters, they do not provide an-

alytical frameworks within which their performance can be opti-

mized. In this paper, we reformulate them as a maximum likeli-
hood (ML) estimation problem, in which the source signal is de-

termined as one that maximizes the likelihood function given the

observed signals. For this purpose, we introduce two probabilistic

density functions (pdf) for the initial source estimates and the dere-
verberation filter, and maximize the likelihood function based on

the Expectation-Maximization (EM) algorithm. Experimental re-

sults show that the performance of HERB and SBD can be further

improved in terms of the energy decay curves of the dereverberated
impulse responses given the same number of observed signals.

Section 2 defines the Fourier spectra used in this paper. Sec-

tions 3 and 4 describes the present method. Section 5 reports the

experimental results. Section 6 summarizes our conclusions.

2. SHORT- AND LONG-TIME FOURIER SPECTRA

With our approach, it is important to integrate information on speech

signal features, which account for the source characteristics, and
on room acoustics features, which account for the reverberation

effect. In general, the successive application of short-time frames

of the order of tens of milliseconds is useful for analyzing such

time-varying speech features, while a relatively long-time frame
of the order of thousands of milliseconds is often required to com-

pute room acoustics features. In this paper, we introduce two types

of Fourier spectra based on these two analysis frames, a short-

time Fourier spectrum (STFS) and a long-time Fourier spectrum
(LTFS). We denote the respective frequency components in the

STFS and in the LTFS by a symbol with a suffix “(r)” as s
(r)
l,m,k

and a symbol without a suffix as sl,k, where l and m are indices

of long-time and short-time frames, respectively, and k is the fre-

quency index. As shown in the following, a short-time frame can
be taken as a component of a long-time frame; therefore, a fre-

quency component in an STFS has both suffixes, l and m. The

two spectra are defined as

s
(r)
l,m,k = 1/K(r)

K(r)−1∑
n=0

g(r)[n]s[tl,m + n]e−j2πkn/K(r)
,

sl,k = 1/K

K−1∑
n=0

g[n]s[tl + n]e−j2πkn/K ,
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where s[n] is a digitized waveform signal, g(r)[n] and g[n], K(r)

and K, and tl,m and tl are window functions, the number of dis-

crete Fourier transformation (DFT) points, and time indices for an
STFS and an LTFS, respectively. We set the relationship between

tl,m and tl as tl,m = tl + mτ for m = 0 to M − 1 where τ is

a frame shift between successive short-time frames. Furthermore

we introduce the following normalization condition

K = κK(r),

g[n] = κ
M−1∑
m=0

g(r)[n − mτ ].

where κ is an integer constant. With this, the following equation

holds between STFS, s
(r)
l,m,k and LTFS, sl,k′ where k′ = κk:

sl,k′ =
M−1∑
m=0

s
(r)
l,m,kη−m, (1)

where η = ej2πkτ/K(r)
. We also define an inverse operation, de-

noted by LSm,k{·}, that transforms a set of LTFS bins sl,k′ for

k′ = 1 ∼ K at a long-time frame l, denoted by {sl,k′}l, to an
STFS bin at a short-time frame m and a frequency index k as

s
(r)
l,m,k = LSm,k{{sl,k′}l}.

This transformation can be implemented by cascading an inverse
long-time Fourier transformation and a short-time Fourier trans-

formation. Obviously, LSm,k{·} is a linear operator.

3. PROBABILISTIC MODELS OF SOURCE AND ROOM
ACOUSTICS

Let us define the following terms:

x
(r)
l,m,k : STFS of the observed reverberant signal

s
(r)
l,m,k : STFS of the unknown source signal

ŝ
(r)
l,m,k : STFS of the initial source signal estimate

wk′ : LTFS of the unknown inverse filter (k′ = κk)

We assume that x
(r)
l,m,k, s

(r)
l,m,k, ŝ

(r)
l,m,k and wk′ are the realizations

of random processes X
(r)
l,m,k , S

(r)
l,m,k, Ŝ

(r)
l,m,k and Wk′ , respectively,

and that ŝ
(r)
l,m,k is given from the observed signal based on the fea-

tures of a speech signal such as harmonicity and sparseness.

Now, assume x
(r)
l,m,k and ŝ

(r)
l,m,k are given for a certain time

duration and let z
(r)
k = {{x(r)

l,m,k}k, {ŝ(r)
l,m,k}k} where {·}k rep-

resents the time series of STFS bins at a frequency index k. With

this, we assume that speech can be dereverberated by estimating a

source signal that maximizes a likelihood function defined at each

frequency index k as

θk = arg max
Θk

log p{z(r)
k |Θk}

= arg max
Θk

log

∫
p{wk′ , z

(r)
k |Θk}dwk′ , (2)

where Θk = {S(r)
l,m,k}k , θk = {s(r)

l,m,k}k, and k′ = κk is a fre-

quency index for LTFS bins. Note that the integral in (2) is a sim-

ple double integral on the real and imaginary parts of wk′ . To

analyze this function, we further assume {Ŝ(r)
l,m,k}k and the joint

l=1, m=0~M-1

Wk’Xl,k’

Sl,k’=ΣSl,m,kη-m(r)

m

σl,m,k
(sr)σl,k

(a)

Sl,m,kŜl,m,kŜl,m,kŜl,m,kŜl,m,k
(̂r) Wk’Xl,k’

Sl,k’=ΣSl,m,kη-m(r)

m

σl,m,k
(sr)σl,k

(a)

Sl,m,kŜl,m,kŜl,m,kŜl,m,kŜl,m,k
(̂r)

l=2, m=0~M-1

...

Fig. 1. Graphical model for speech dereverberation

event of {X(r)
l,m,k}k and Wk′ are statistically independent given

{S(r)
l,m,k}k as shown by the graphical model in Fig. 1. With this,

p{wk′ , zk|Θk} in (2) can be divided into two functions as

p{wk′ , zk|Θk} = p{wk′ , {x(r)
l,m,k}k|Θk}p{{ŝ(r)

l,m,k}k|Θk}.
(3)

The former is a pdf related to room acoustics, that is, the joint

pdf of the observed signal and the inverse filter given the source
signal. The latter is a pdf related to the information provided by

the initial estimation, that is, the pdf of the initial source estimate

given the source signal. We can also interpret the second com-

ponent as being the probabilistic presence of the speech features
given the true source signal. We refer to them as acoustics and

source pdfs, respectively. Ideally, the inverse transfer function

wk′ transforms xl,k′ into sl,k′ , that is, wk′xl,k′ = sl,k′ . How-

ever, in a real acoustical environment, this equation may contain a

certain error ε
(a)
l,k′ = wk′xl,k′ − sl,k′ for such reasons as insuffi-

cient inverse filter length and fluctuation of room transfer function.
Therefore, the acoustics pdf can be considered as a pdf for this

error as p{wk′ , {x(r)
l,m,k}k|Θk} = p{{ε(a)

l,k′}k′ |Θk}. Similarly,

the source pdf can be considered as a pdf for the error ε
(sr)
l,m,k =

ŝ
(r)
l,m,k − S

(r)
l,m,k as p{{ŝ(r)

l,m,k}k|Θk} = p{{ε(sr)
l,m,k}k|Θk}, or the

difference between the source signal and the feature-based signal.

In this paper, for the sake of simplicity, we assume these errors

to be sequentially independent random processes given {S(r)
l,m,k}k.

We further assume that the real and imaginary parts of the above
two error processes are mutually independent with the same vari-

ances and can individually be modeled by Gaussian random pro-

cesses with zero means. With these assumptions, the error pdfs are

represented as

p{{ε(a)
l,k′}k′ |Θk} =

∏
l

b
(a)
l,k exp

{
−|ε(a)

l,k′ |2
2σ

(a)
l,k′

}
,

p{{ε(sr)
l,m,k}k|Θk} =

∏
l

∏
m

b
(sr)
l,m,k exp

{
−|ε(sr)

l,m,k|2
2σ

(sr)
l,m,k

}
,

where σ
(a)
l,k′ and σ

(sr)
l,m,k are, respectively, variances for the two pdfs,

hereafter referred to as acoustics and source uncertainties. In this

paper, we assume these two values to be given based on the fea-
tures of the speech signals and room acoustics.

4. SOLUTION BASED ON EM ALGORITHM

One effective way to solve (2) is to use the Expectation-Maximization

(EM) algorithm. With this approach, the expectation step (E-step)

with an auxiliary function Q(Θk|θk) and the maximization step
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(M-step), respectively, are defined for speech dereverberation as

Q(Θk|θk) = E|θ
[
log p

{
log p{Wk′ , z

(r)
k |Θk}

}]
, (4)

=

∫ [
log p{wk′ , z

(r)
k |Θk}

]
p{wk′ , z

(r)
k |θk}dwk′ ,

θ̃k = arg max
Θk

Q(Θk|θk). (5)

According to the EM algorithm, the log-likelihood log p{z(r)
k |θk}

increases by updating θk with θ̃k obtained through an EM itera-
tion, and it converges to a stationary point solution by repeating

the iteration.

4.1. Solution

Instead of directly calculating the E- and M-steps, we first analyze

Q(Θk|θk) − Q(θk|θk) that has its maximum value at the same

Θk as Q(Θk|θk). After a certain arrangement of Q(Θk|θk) −
Q(θk|θk) and only extracting the terms that involves Θk, we ob-

tain the following function.

QΘ{Θk|θk}

=
∑

l

{
−|w̃k′xl,k′ − Sl,k′ |2

2σ
(a)
l,k′

+
∑
m

−|ŝ(r)
l,m,k − S

(r)
l,m,k|2

2σ
(sr)
l,m,k

}
.(6)

where

w̃k′ =

∑
l sl,k′x∗

l,k′/σ
(a)
l,k′∑

l xl,k′x∗
l,k′/σ

(a)
l,k′

, (7)

and “∗” means a complex conjugate. It is important to note that

the Θk that maximizes QΘ{Θk|θk} also maximizes Q(Θk|θk),

and the Θk that makes QΘ{Θk|θk} > QΘ{θk|θk} also makes
Q(Θk|θk) > Q(θk|θk). We can obtain the Θk that maximizes

QΘ{Θk|θk} by differentiating it with S
(r)
l,m,k , setting it at zero,

and solving the resultant simultaneous equations. However, the
computational cost of obtaining the solution is rather high because

we need to solve this equation with M unknown variables for each

l and k.

Instead, to maximize (6) in a more efficient way, we introduce
the following assumption: The power of an LTFS bin can be ap-

proximated by the sum of the power of the STFS bins that compose

the LTFS bin based on (1), that is,

|sl,k′ |2 �
M−1∑
m=0

|s(r)
l,m,k|2. (8)

With this assumption, (6) can be rewritten as

QΘ{Θk|θk} =
∑

l

∑
m

−|LSm,k{{w̃k′xl,k′}l} − S
(r)
l,m,k|2

2σ
(a)
l,k′

+
∑

l

∑
m

−|ŝ(r)
l,m,k − S

(r)
l,m,k|2

2σ
(sr)
l,m,k

.

By differentiating the above equation and setting it at zero, we can

obtain a closed form solution for (5) as follows

s̃
(r)
l,m,k =

σ
(sr)
l,m,kLSm,k{{w̃k′xl,k′}l} + σ

(a)
l,k′ ŝ

(r)
l,m,k

σ
(a)
l,k′ + σ

(sr)
l,m,k

. (9)

4.2. Discussion

• With this approach, the dereverberation is achieved by re-
peatedly calculating (7) and (9) in turn.

• w̃k′ in (7) corresponds to the dereverberation filter obtained

by the conventional HERB and SBD approaches given the
source signal estimates sl,k′ and the observed signals xl,k′ .

• Equation (9) updates the source estimate by a weighted av-

erage of the initial source estimate ŝ
(r)
l,m,k and the source

estimate obtained by multiplying x
(r)
l,k′ by w̃k′ . The weight

is determined according to the source and acoustics uncer-

tainties. In other words, one EM iteration elaborates the

source estimate by integrating two types of source estimates
obtained based on source and room acoustics properties.

• While we can reduce the computational cost with the ap-

proximation (8), an advantageous feature of the EM algo-
rithm, namely, the monotonic increase in the log-likelihood

may be degraded. We examine this issue experimentally.

5. EXPERIMENTS

We performed simple experiments with the aim of confirming the

performance with the present method. We adopted the same source
signals of word utterances and the same impulse responses with

RT60 times of 0.1, 0.2, 0.5, and 1.0 s as those in [6]. The observed

signals were synthesized by convolving the source signals with the

impulse responses. We prepared two types of initial source esti-
mates that were the same as those used for HERB and SBD, that is,

ŝ
(r)
l,m,k = H{x(r)

l,m,k} and ŝ
(r)
l,m,k = N{x(r)

l,m,k}, where H{·} and

N{·} are, respectively, a harmonic filter used for HERB [6] and a

noise reduction filter used for SBD [7]. We determined the source

uncertainty σ
(sr)
l,m,k in relation to a voicing measure, vl,m, which is

used with HERB to decide the voicing status for each short-time

frame of the observed signals. According to this measure, a frame

is determined as voiced when vl,m > δ for a fixed threshold δ.

Specifically, σ
(sr)
l,m,k was determined in our experiments as

σ
(sr)
l,m,k =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

G
{

vl,m−δ

maxi{vl,m}−δ

}
if vl,m > δ and k is a har-
monic frequency,

∞ if vl,m > δ and k is not a

harmonic frequency,

G
{

vl,m−δ

mini{vl,m}−δ

}
if vl,m ≤ δ,

where G{u} is a non-linear normalization function that we defined

as G{u} = e−160(u−0.95). On the other hand, we set σ
(a)
l,k′ at a

constant value of 1. As a consequence, the weight for ŝ
(r)
l,m,k in

(9) becomes a sigmoid function that varies from 0 to 1 as u in

G{u} moves from 0 to 1. For each experiment, the EM steps were
iterated four times. In addition, we also introduced the repetitive

dereverberation filter estimation scheme that was used in [6] and

[7]. As analysis conditions, we adopted K(r) = 42 ms, K = 10.9
s, τ = 1 ms, and a 12 kHz sampling frequency.

5.1. Energy decay curves

Figure 2 shows the energy decay curves of the room impulse re-

sponses and impulse responses dereverberated by HERB and SBD

with and without the EM algorithm using 100 word utterances
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Fig. 2. Reverberation curves of room impulse responses and im-

pulse responses dereverberated by HERB, HERB+EM, SBD and

SBD+EM using 100 word observed signals uttered by a woman
(left panels) and a man (right panel).
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Fig. 3. Reverberation curves of original room impulse responses

and impulse responses dereverberated by HERB, HERB+EM,

SBD and SBD+EM using 10 word observed signals uttered by a

woman (left panels) and a man (right panel).

as the observed signals. The figure clearly demonstrates that the

EM algorithm can effectively reduce the reverberation energy with

both HERB and SBD. Figure 3 shows the results when only 10
word utterances were used as the observed signals. Here, only the

results for RT60=1.0 sec are shown because of the limited space.

Although the performance of each method was degraded compared

with that achieved based on 100 word utterances, the EM algo-
rithm still worked effectively to reduce reverberation energies in

each method.

5.2. Increase of log-likelihood function

Instead of directly examining whether or not the log-likelihood

function (2) actually increases, we counted the ratio by which each

EM iteration increases QΘ(Θ|θ) in (6). Figure 4 shows the resul-

tant ratios at each EM iteration. In all cases, the ratio was more
than 0.95, which means that in most cases each EM iteration in-

creases the log-likelihood function. In addition, except for the first

step, the more the iteration is repeated, the more steadily the func-

tion increases. These results show that approximation (8) works

1 2 3 4
0.9

0.92

0.94

0.96

0.98

1

EM step

Ra
tio

HERB+EM
SBD+EM

1 2 3 4
0.9

0.92

0.94

0.96

0.98

1

EM step

Ra
tio

Fig. 4. Ratio of QΘ(Θ|θ) becoming larger than QΘ(θ|θ) by

an EM iteration with 100 words (left panel) and 10 words (right
panel) observations.

rather well for our dereverberation purpose.

6. CONCLUSION

This paper proposed a new dereverberation method, in which fea-
tures of source signals and room acoustics are represented by means

of Gaussian pdfs, and the source signals are estimated as signals

that maximize the likelihood function defined based on these pdfs.

We employed the EM algorithm to solve this optimization prob-
lem efficiently. The experimental results showed that the present

method can greatly improve the performance of the two derever-

beration methods based on speech signal features, HERB and SBD,

in terms of the energy decay curves of the dereverberated impulse
responses. Since HERB and SBD are effective in improving the

ASR performance for speech signals captured in a reverberant en-

vironment, we expect the present method also improves the per-

formance with fewer observed signals.
Future work will include the extension and integration of the

present method to multi-channel signal processing technologies,

its application to adaptive filtering, and the elaboration of proba-

bilistic optimization frameworks such as the optimization of source
and room acoustics uncertainties.
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