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ABSTRACT 

Accurate endpoint detection is important for improving the speech 

recognition capability. This paper proposes a novel endpoint 

detection method which combines energy-based and likelihood 

ratio-based voice activity detection (VAD) criteria, where the 

likelihood ratio is calculated with speech/non-speech Gaussian 

mixture models (GMMs). Moreover, the proposed method 

introduces the discriminative feature extraction technique (DFE) 

in order to improve the speech/non-speech classification. The DFE 

is used in the training of parameters required for calculating the 

likelihood ratio. Experimental results have shown that the 

proposed endpointer achieves good performance compared to an 

energy-based endpointer in terms of start-of-speech (SOS) and 

end-of-speech (EOS) detections. Due to the improvement of the 

endpointer, the performance of automatic speech recognition 

(ASR) has also been improved. 

1. INTRODUCTION 

Robust endpoint detection is crucial for achieving good 

performance in automatic speech recognition (ASR) systems. In 

noisy conditions such as in the case of in-car applications, the 

endpointer fails to detect correct speech segments and causes 

additional errors in an ASR system. With a view to widening the 

usage of ASR systems in real-life environments, the demand for a 

robust endpointer has been growing. The goal of the work reported 

in this paper is to develop a robust endpointer for such an ASR 

system. By developing a robust endpointer, it is possible to 

improve ASR performance in noisy environments. Moreover, the 

accurate endpoint detection reduces the response time and the 

computation cost of ASR systems. This is because only useful 

speech frames are passed to a back-end decoder. 

  In the field of endpoint detection, energy is one of the most 

widely used features [1]. This is because of its simplicity and 

adequate performance in clean conditions. However, an 

energy-based method does not have robustness in low SNR 

conditions [2]. In order to improve the noise robustness of an 

energy-based endpointer, some combinations with spectrum-based 

features such as entropy [3] and cepstral features [4, 5] have been 

reported. In [4], linear discriminant analysis (LDA) is also applied 

to MFCC in order to extract discriminative features for 

speech/non-speech classification. 

  We propose a novel endpoint detection method which is 

robust even in noisy environments. The method combines the 

energy-based and likelihood ratio-based [6] criteria for voice 

activity detection (VAD), where the likelihood ratio is calculated 

using speech/non-speech Gaussian mixture models (GMMs). 

Moreover, the proposed method introduces the discriminative 

feature extraction technique (DFE) [7] in order to extract 

discriminative features for speech/non-speech classification. The 

DFE is used in the training of parameters required for calculating 

the likelihood ratio. The main advantage of introducing DFE is 

that DFE optimizes all the parameters of both front-end feature 

extractor and back-end classifier in a unified framework with a 

minimum classification error (MCE) criterion [8]. 

  The rest of this paper is organized as follows. In Section 2, the 

conventional energy-based and likelihood-based voice activity 

detection (VAD) techniques are described. In Section 3, the 

framework of the proposed endpointer and the parameter 

optimization by DFE are illustrated. In Section 4, the performance 

of the proposed endpointer is evaluated. Finally, a conclusion is 

given in Section 5. 

2. VOICE ACTIVITY DETECTION 

2.1. Energy-based criterion 

Energy is widely used as a feature for VAD. In addition to its 

simplicity, energy has achieved adequate performance in clean 

environments. In the energy-based VAD, if a log-energy exceeds a 

threshold, the frame is classified as speech, otherwise it is 

classified as non-speech. The speech threshold needs to be 

adjusted based on the level of the input signal. In [1, 2], adaptive 

threshold techniques are proposed. The noise level  is 

estimated during non-speech segments using the following first 

recursive order system: 

)(tEnoise

)()1()1()( tEtEtE noisenoise ,       (1) 

where  is the log-energy of frame t and  is the forgetting 

factor. The speech threshold  is then set according to the 

following equation: 

)(tE
)(tTe

)()( tEtT noisee ,            (2) 

where  is a fixed value to determine the threshold. If 

, the update in Eq. (1) stops. If )()( tTtE e )()( tEtE noise , the 

update restarts. 

2.2. Likelihood-based criterion 

GMMs have been widely used as classifiers in the speaker 

recognition field due to their adequate modeling performance and 
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text-independency [9, 10]. By training one GMM with speech data 

and another with non-speech data, it is possible to handle the 

frame-based speech/non-speech classification [6]. The 

log-likelihood ratio of speech and non-speech GMMs is calculated 

as follows: 

,         (3) ));(());(()( 01 tgtgtL yy

where 0  and 1  represent the log-likelihood of the 

non-speech and speech GMM respectively,  represents a 

feature vector for frame t and  represents the parameter set of 

both speech and non-speech GMMs. These parameters are trained 

based on the maximum likelihood (ML) criterion with the 

expectation maximization (EM) algorithm. If  exceeds a 

speech threshold, the frame is classified as speech, otherwise it is 

classified as non-speech. 

g g

)(ty

)(tL

3. PROPOSED ENDPOINT DETECTION 

3.1. Framework of proposed endpointer 

The proposed endpointer utilizes both the energy and the 

likelihood ratio for the VAD. In order to improve robustness to 

noisy environments, spectral subtraction (SS) is used as a 

pre-processing step, where the noise spectrum is estimated using 

the quantile based noise estimation technique (QBNE) [11]. An 

input signal is framed using a hamming window and the power 

spectral density (PSD) of each frame is calculated. QBNE-SS is 

then applied as follows: 

,    (4) )},(),,(ˆ),(max{),(ˆ tkXtkNtkXtkS

where  represents the k-th PSD of the noisy signal at 

frame t,  represents the k-th PSD of the noise estimated 

by QBNE and  represents the k-th PSD of an enhanced 

input signal. The parameters 

),( tkX
),(ˆ tkN

),(ˆ tkS
 and  control the subtraction 

and flooring value. The log-energy of the frame t is calculated by 

the following equation: 

,            (5) 
H

L

K
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where L  and H  represent the lowest and highest frequency 

components which are used to calculate the log-energy, 

respectively. 

K K

  For the feature vector of the GMMs, a log mel-filterbank 

energy is utilized. In order to extract the difference of 

time-variation, a corresponding delta is concatenated to the log 

mel-filterbank energy. The first form of the feature vector  is 

represented as follows: 

)(tx

,     (6) 
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where  represents the number of mel-filterbanks, 

represents the n-th log mel-filterbank energy and 

N )(txn

)(tn

represents the corresponding delta. The static part n  of the 

feature vector  changes with the level of the input signal. In 

order to extract only the characteristics related to the spectral 

shape, the feature vector  is normalized by subtracting the 

mean of each frame as follows: 
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where, 

N
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The normalized feature vector )(tx  is represented as follows: 

T

NN tttxtxt )(,)(,)(,),()( 11x .     (9) 

After normalization, )(tx  is projected to a lower feature vector 

 for decorrelation and for the reduction of computational cost. 

The projection is represented by the following equation: 

)(ty

)()( tt xPy ,               (10) 

where  is an  projection matrix which is obtained 
using principal component analysis (PCA). After the extraction of 
the final form of the feature vector , the log-likelihood ratio 

of speech/non-speech is calculated as in Eq. (3). 

P NM 2
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  In the proposed endpointer, a frame is judged as speech only 

when it satisfies the following condition: 

,         (11) )()(&)()( tTtLtTtE le

where e  and l  represent the speech threshold for the 

energy and the likelihood ratio, respectively. Both thresholds are 

updated adaptively based on the method described in Section 2.1. 

This combination makes it possible to utilize both energy and 

spectral information for the VAD. 

)(tT )(tT

  After the VAD, a finite-state automaton decides the 

start-of-speech (SOS) and end-of-speech (EOS) points. The 

automaton is driven based on the frame-based classification. Some 

decision rules related to time constraint are used to decide both 

SOS and EOS. 

3.2. Discriminative feature extraction 

In order to calculate the likelihood ratio, it is necessary to train the 

parameters: the elements of the projection matrix and the means, 

variances, and mixture weights of the speech/non-speech GMMs. 

The projection matrix is obtained using PCA. The GMMs are 

trained by EM algorithm. However, these techniques are not based 

on a criterion which minimizes the speech/non-speech 

classification errors. Therefore, we introduce the discriminative 

feature extraction technique (DFE) [7] in order to optimize the 

parameters of both the projection matrix and the GMMs. DFE is 

based on the minimum classification error/generalized 

probabilistic descent (MCE/GPD) method [8] and can adjust a 

feature extractor as well as a classifier in a unified framework. It 

was reported to be an effective technique for GMM-based speaker 

recognition systems [9, 10]. 

  In the proposed method, the frame-based misclassification 

measure of the likelihood ratio is defined as follows: 

));(());(( tgtgd jij yy ,        (12) 

where, 

jCt)(y  and ]1,0[, ji .         (13) 

j  represents the two classes ( :non-speech or 1 :speech). If 

the frame is classified correctly,  becomes negative. From the 

misclassification measure, the loss function of DFE is defined as 

follows: 

C 0C C

d
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where  represents a positive parameter which controls the slope 

of the sigmoid function. The loss function becomes close to 1 in 

the case of miss-classification, otherwise it becomes close to 0. All 

adjustable parameters of the projection matrix and the 

speech/non-speech GMMs are defined as . In order to minimize 

the loss function  in Eq. (14), the parameter set  is updated 

based on the MCE/GPD training rule: 

l

])[);((][]1[ ttltt t x ,       (15) 

where t  represents the step size parameter which decreases 

according to the number of iterations. Parameter re-estimation is 

applied for every frame with training data until the parameters 

converge. Figure 1. The histograms of the differences (# of frames) between 

manually labeled and detected endpoints: SOS (left) and EOS (right) 

points for 5dB SNR car noise. 
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  In the adjustment process, the variances and weights of the 

GMMs are subject to certain constraints. They should be positive 

values and the summation of the weights should be one. In order 

to satisfy the constraints, these parameters are transformed into a 

parallel subspace before adjustment. The parameters are adjusted 

within the subspace and then transformed inversely. The details of 

the subspace technique are described in [9]. 

4. EXPERIMENTAL RESULTS 

Two experiments were conducted in order to evaluate the 

performance of different endpointers: a conventional energy-based 

approach [2] enhanced by QBNE-SS and the proposed endpointer 

both without and with DFE training. In the first experiment, the 

differences between manually labeled and detected endpoints were 

measured [12]. The second experiment was conducted to evaluate 

the endpointers in terms of ASR performance. 

4.1. Experimental setups 

4.1.1. Training databases 

For the training of the projection matrix and the GMMs, speech 

and noise datasets were prepared. The speech data consisted of 

3000 short utterances recorded in a clean environment covering 

four languages: English, French, German and Japanese. The 

JEIDA noise database [13] was used as noise data. The database 

consisted of 18 kinds of noises: car noise, factory noise, babble 

noise, etc. In order to create the noisy speech data, a part of the 

noise data was artificially added to the speech data, where the 

SNRs were 0dB, 5dB, 20dB and clean.

4.1.2. Experimental conditions

An input signal was sampled at 11025Hz and framed using a 

hamming window. The length of one frame was 23ms with 8ms 

shift. The parameters L  and H  in Eq. (5) were set to 130Hz 

and 4900Hz, respectively. The number of mel-filterbanks  was 

set to 24 and the dimension 

K K

N

M  of the final feature vector 

was set to 16. The number of frames for extracting the delta 

was set to nine. 

)(ty

  In the DFE training, PCA and EM algorithm were used to 

obtain the initial values of the projection matrix and the GMMs. 

PCA was calculated using the 48-dimensional feature vectors as 

described in Eq. (9). These feature vectors were extracted from 

both speech and noise training data. The eigenvectors with the 

top-16 eigenvalues of the correlation matrix calculated from the 

feature vectors were chosen as the initial projection matrix, where 

the cumulative proportion was 0.87. As the initial classifier, 

32-mixture diagonal GMMs were used. The GMMs were trained 

by EM algorithm, where the initial mean vectors were obtained 

using the LBG algorithm and the initial diagonal variances and 

mixture weights were set to 1 and 1/32, respectively. The DFE 

training was iterated 32 epochs with all speech and noise training 

data, where the order of the samples was set randomly for each 

epoch.  in Eq. (14) was set to 1.5. t  in Eq. (15) was initially 

set to  and was decreased monotonically in the 

following epochs as the iteration increases. 

4100.1

4.2. Endpoint accuracy 

The first experiment was evaluated in terms of differences 

between manually labeled and detected endpoints. The test dataset 

used in this experiment consisted of 1000 utterances of Japanese 

city names. Car noise and babble noise which were different from 

training data were artificially added to the database with 5dB 

SNR. 

  Figure 1 shows the histograms of the differences for the car 

noise and Table 1 lists the statistical information of the histograms 

for all conditions. In this experiment, the automatons of each 

endpointer were tuned using training data with a criterion which 

maximized the rate of a distribution less than 10-frames difference. 

Table 1. The statistical information of the histograms, where each value represents the rate (%) of the distribution. 

Conditions Clean Car 5dB Babble 5dB 

SOS EOS SOS EOS SOS EOSThe difference of the 

number of frames  10  30  10  30  10  30  10  30  10  30  10  30

Energy 96.7 99.7 91.7 99.1 59.5 79.7 60.3 78.4 57.1 77.0 56.9 76.3

Proposed without DFE 94.0 98.9 92.7 98.2 67.5 82.5 60.0 79.6 63.3 78.0 60.2 78.1

Proposed with DFE 95.9 99.1 92.5 98.0 79.6 92.2 73.8 90.6 79.5 91.6 74.3 91.6
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In Fig. 1, the histograms of the proposed endpointers (without and 

with DFE) show sharper peaks than in the case of using the 

energy-based method. This means that the proposed endpointers 

achieved good performance for SOS and EOS detections. 

Moreover, the results obtained through DFE training outperformed 

the results without DFE. The differences of each endpointer can be 

clearly seen in Table 1 where the results for clean and babble noise 

are also shown. For the clean condition, all endpointers showed 

good performance and there is no significant difference among 

them. For the noisy conditions, on the other hand, the DFE 

training improved the endpoint accuracy of the proposed method. 
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The second experiment was conducted in terms of ASR 

performance with the three endpointers. The Toshiba ASR engine 

is developed for an embedded platform. It uses a proprietary 

MFCC-based front-end and an efficient HMM-based decoder, 

where the total number of Gaussians is about 8000. The acoustic 

models are tuned for noisy in-car environments. A command and 

control task in English was used. The corpora for the task were 

recorded in four kinds of real-life environments: office, in-car 

idling, in-car driving in city conditions and in-car driving in 

highway conditions. A grammar of approximately 3700 unique 

utterances was used for the task, representing the total number of 

unique utterances in the corpora in all four environments. 

Figure 2. The sentence error rate of the ASR for the four recording 

environments. 

  Figure 2 shows the sentence error rate of the ASR for the four 

recording environments. The proposed endpointer without DFE 

outperformed the energy-based technique for in-car conditions. 

For the idling and highway, it achieved 38.1% and 11.1% of 

relative error reduction rate, respectively. The DFE training further 

improved the performance of the proposed endpointer for all 

environments. In particular, for the highway condition, it achieved 

11.2% of relative error reduction rate compared to the case 

without DFE. These experimental results have shown that by 

training the parameters of the projection matrix and the GMMs 

with DFE, the robustness to adverse conditions is improved in 

terms of the ASR accuracy as well as in terms of the endpoint 

accuracy. 

5. CONCLUSION

This paper presented a robust endpoint detection method for 

speech recognition. The proposed endpointer is based on voice 

activity detection (VAD) with both energy-based and likelihood 

ratio-based criteria. Moreover, the proposed endpointer introduces 

the discriminative feature extraction technique (DFE) in order to 

optimize the parameters for the calculation of the log-likelihood 

ratio. Experimental results have shown that DFE training improves 

the performance of the endpointer in terms of SOS and EOS 

detections. In the ASR evaluation, the proposed endpointer has 

shown the improvement of the recognition accuracies in noisy 

environments compared to the conventional energy-based 

endpointer. 
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