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ABSTRACT

An auto segmentation based partitioning and clustering approach to

robust Voice Activity Detection (VAD) is proposed. It is done in

two successive steps: homogeneous frame partitioning and segment

clustering. The first step, due to its auto segmentation nature, does

not need a noise model, and is applicable to different noise types and

SNR’s. The algorithm is a dynamic programming based procedure

and provides a graceful performance in finding segmentation thresh-

olds. Multiple parameters like energy, pitch and voicing information

can be easily incorporated into the procedure. The algorithm is eval-

uated on the test sets in the Aurora2 database. The algorithm shows

its robustness at low SNR operating environments; the endpoint es-

timate errors are shown to have small variance.

1. INTRODUCTION
Endpointing is a key component in speech recognition systems. There

is a strong need of robust VAD technique with more and more speech

recognition used in real applications.

Threshold based VAD algorithms extract some measured fea-

tures from the input signal and compare to thresholds. If the features

exceed the threshold, a decision that voice is active can be made

[11]. How to achieve accurate thresholds, however, is a big issue in

endpointing. Robust estimation method is necessary. Given a back-

ground noise interval where the threshold is estimated or updated,

mean-value based algorithms depend on whether the interval con-

tains voice or not, while histogram-based algorithms [9] relay on

the percentage of voice and background noise in the interval [13].

Histogram-based algorithms also need robust pick detection and lots

of data to obtain accurate Probability Distribution Function (PDF).

Frame-clustering based methods [13] organize frame features into

different clusters without considering the continuity of voice. On

the other hand, multiple parameters must be incorporated to be com-

pared with the threshold. Such algorithms like in [14] [10] [12] need

a prior information or parameter training.

In this paper we propose a new endpointing algorithm based on

auto segmentation which is also named as optimal segmentation [4]

or optimal partitioning [7] by others. Auto segmentation is an im-

age processing based technique. Its goal is to divide a time series

into homogeneous blocks. A variety of signal processing and re-

lated problems such as signal detection and characterization, den-

sity estimation, cluster analysis, and classification can be viewed

as the search for an optimal partition of data given on a time in-

terval. Auto segmentation has already been successfully used in im-

age de-noising [4], text segmentation in information retrieval [5] [3],

DNA/RNA sequence analysis [1] [15], etc. In the auto segmentation

algorithms, quite a lot try to minimize the segmentation cost via Dy-

namic Programming (DP) that is often employed in alignment and

model-fitting sequence segmentation algorithms.

In the proposed method, we also use DP to do the search. The

segmentation score function is defined as a homogeneity criterion

penalized by segmentation complexity. We first perform auto seg-

mentation to partition feature vectors of all frames in the time inter-

val into several segments. A purpose of this step is to limit speech-

noise transfer times in the interval. Relaxing the dependence on the

percentage of noise in the interval is another consideration. Due to

its auto segmentation nature, this step does not need a noise model,

and is applicable to different noise types and Signal-to-Noise Ratios

(SNR’s). The produced segment centroids are then ordered accord-

ing to a sorting factor, after which auto segmentation is performed

again to separate the sorted segment centroids into 2 clusters, one

is for speech and the other is for background noise. Finally end-

points in the time interval are determined according to the start and

end time of the first and last speech segments, respectively. Since

both auto segmentations are DP based procedure, the algorithm pro-

vides a graceful performance in finding segmentation boundaries and

classification threshold. Multiple parameters like energy, pitch and

voicing information can be easily incorporated into the procedure.

The algorithm is evaluated on the test sets in the Aurora2 database.

Variance of endpoint estimate errors is considered as a primary guide-

line to evaluate the system performance. In the experiments, we first

investigate the speech-noise discrimination of different types of pa-

rameters like energy, pitch and voicing information. Then robustness

of the proposed approach is tested. From the experimental results we

can see that at low SNR operating environments, the endpoint esti-

mate errors are shown to have small variance.

2. AUTO SEGMENTATION AND HOMOGENEOUS
FRAME PARTITIONING

For a given time interval I which contains N frames and a predefined

parameter K (1 ≤ K ≤ N ) which represents the total number of

segments to be produced, segmentation S(I, K) is defined as a set

of K blocks
S(I, K) = {Sk, 1 ≤ k ≤ K}

where the blocks are sets of frames defined by consecutive indexes

Nk = {nk−1 + 1, . . . , nk}
Sk = {�xn, n ∈ Nk}

satisfying the usual conditions
�

k Sk = I and Sk

�
Sk′ = ∅ if

k �= k′. Here �xn is the d-dimensional feature vector associated with

frame n, and nk is the end frame of segment Sk. The segmentation

score function, similarly with Bayesian Information Criterion (BIC)

[2], is defined as a homogeneity criterion penalized by segmenta-

tion complexity: the number of parameters in the segmentation. The

formulation is

F [S(I, K)] = H[S(I, K)] + P [S(I, K)]

=
K�

k=1

Dk + λp#[S(I, K)] log(N)
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where H[S(I, K)] is the homogeneity criterion of segmentation

S(I, K) and P [S(I, K)] is the penalty item. Dk = D(nk−1 +
1, nk) is a measure function of homogeneity associated with seg-

ment k positioned from frame nk−1 + 1 to nk. λp is the penalty

weight. #[S(I, K)] is the number of parameters in the segmenta-

tion S(I, K).

In this paper, D(n1, n2) is a within-segment distortion which is

a function of its boundaries:

D(n1, n2) =

n2�
n=n1

[�xn − �C(n1, n2)]
T [�xn − �C(n1, n2)]

where
�C(n1, n2) =

1

n2 − n1 + 1

n2�
n=n1

�xn

is the centroid of the segment. Thus the number of parameters in the

segmentation S(I, K) is K×d. An optimal segmentation S∗(I) can

be obtained by minimizing F [S(I, K)] over all segment numbers

and segment boundaries:

S∗(I) = arg min
K,|S|=K

F [S(I, K)]

Since the segmentation complexity is independent on the positions

of segment boundaries when the number of segments is fixed, we

can separate the minimization into two successive procedures: first

minimize H[S(I, K)] for each K and then find the minimum value

of F [S(I, K)] over all K.

The minimum of H[S(I, K)] can be found through a DP pro-

cedure which can be implemented in level building manner, i.e., the

lth level has l segments. So given a K, there are total L = K levels

in DP search. The algorithm derives the optimal partition of the first

n frames at level l using previously obtained optimal partitions, i.e.,

those of the first 1, 2, . . . , n − 1 frames at level l − 1. At each level

we must consider all possible ending locations j, l − 1 ≤ j < n of

the next-to-last segment of the optimal partition. For each putative

j, the distortion function is — by the principle of optimality — the

distortion of the optimal subpartition prior to j plus the distortion

of the last segment itself. The former was stored at previous level,

and the later is a simple evaluation of D. The desired new optimal

segmentation corresponds to the minimum over all j.

In the implementation of auto segmentation in frame partition-

ing, a constrained DP algorithm is adopted. The number of frames in

produced segments is limited in the range [na,nb]. The lower bound

is the shortest duration that a phone should occupy, and the upper

bound is used to save computing resources. Two boundary functions

on the values of frame index n for a given value of level l are de-

fined as Ba(l) = nal and Bb(l) = nbl. They are used to restrict the

range of the optimal segmentation of the first n frames at level l to

fall within a reasonable set of the (n, l) plane. And the putative end-

ing locations of the next-to-last segment of the optimal path, j, are

bounded by (n−nb) and (n−na). Due to the limitation of minimum

length of the segments, there should be at most �N/na� segments or

levels to be produced. (The symbol �x� means the largest integer

not greater than x.) More precisely, define H∗(n, l) to be the value

of the distortion of the optimal segmentation S∗(n, l) of the first n
frames at level l, for 1 ≤ n ≤ N . The DP algorithm shown in Fig.

1 finds the optimal segmentation S∗(N, l∗), i.e. S∗(I).

To further speed up the algorithm, frame partitioning is per-

formed in every 0.5 second.

There are two obvious advantages of frame partitioning before

clustering. It is capable of limiting speech-noise transfer times in the

time interval and relaxing algorithm’s dependence on the percentage

of noise.

Auto Segmentation Algorithm
1. Start level (l = 1)

H∗(n, l) =

�
D(1, n), Ba(1) ≤ n ≤ Bb(1)
∞, else

2. For l = 2, . . . , (L = �N/na�), do

• For n = Ba(l), . . . , Bb(l), do

– Compute

H∗(n, l) = min
j

{H∗(j, l−1)+D(j +1, n)},

for n − nb ≤ j ≤ n − na.

– The value of j where this minimum occurs is

stored as p(n, l).

3. Select K∗ = l∗ = arg min
l

[H∗(N, l) + λpld log(N)] as

the optimal number of segments.
4. Backtrack using p to identify the end locations of individ-

ual blocks of the optimal segmentation S∗(N, l∗) in the

following way. Let nK∗ = N , nK∗−1 = p(nK∗ , K∗),

nK∗−2 = p(nK∗−1, K
∗ − 1), etc. Then the last block in

S∗(N, l∗) contains frames nK∗−1 +1, . . . , nK∗ = N , the

next-to-last block in S∗(N, l∗) contains frames nK∗−2 +
1, . . . , nK∗−1, and so on.

5. Compute centroid �Ck = �C(nk−1 + 1, nk) for each seg-

ment.

Fig. 1. Auto segmentation algorithm.

3. SEGMENT CLUSTERING AND ENDPOINT
IDENTIFICATION

In this section, we propose a way to organize the segments produced

in last section into 2 classes, i.e., speech and noise.

First we represent each segment by its centroid to form a new

series {�Ck, k = 1, 2, . . . , K∗}. Second we sort the centroid series

according to a factor related to the variance normalized time-domain

LOG Energy (LOGE) and Cross Correlation corresponding to Pitch

(CCP). To say more precisely, CCP is obtained from the output of

pitch tracker in the Entropic Signal Processing System (ESPS) [8].

For voiced region, it is the peak normalized cross-correlation value

that was found to determine the output F0, while for unvoiced re-

gion, it is the largest cross-correlation value found at any lag. After

the average LOGE (Ek) and CCP (Pk) of each segment being cal-

culated, the sorting factor can be obtained by adding them together,

Qk = Ek + Pk. The segment indexes {1, 2, . . . , K∗} are then or-

dered according to the sorting factor to generate the ordered segment

centroids {�Ck1 , �Ck2 , . . . , �CkK∗ } where {ki, 1 ≤ i ≤ K∗} satis-

fies Qk1 ≤ Qk2 ≤ · · · ≤ QkK∗ .

After ordering the segment centroids in the way described in

last paragraph, we want to find a boundary to separate speech seg-

ments from noise segments. This is obviously another auto segmen-

tation procedure which has only 2 levels. In this step, we do not

use the segmentation penalty, i.e., λp = 0, since we suppose there

are both speech and noise in the interval. If this kind of cluster-

ing technique directly acts on the sorted frame-level feature vectors

rather than segment-level, the results must depend on the percentage

of noise in the interval. It is obvious since the distortion function is

associated with the number of frames in each segment which is hid-

den in segment-level clustering. Because it is a DP based procedure,

this step provides a graceful performance in finding the classification

threshold.
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Table 1. Endpoint estimate errors (in msec): test set A, averaged

over 0-20 dB. (m: mean, σ2: variance)

ID parameter d Start point End point

m σ m σ
1 LOGE 1 67 102 -117 136

2 RMS 1 98 78 -229 217

3 CCP 1 42 146 -76 175

4 MFCC’s 12 34 142 -71 170

5 FBANK’s 23 63 114 -120 157

6 1+3 2 74 98 -116 129

7 1+4 13 61 109 -99 140

8 1+5 24 65 111 -121 151

9 2+3 2 90 85 -145 145

10 2+4 13 69 105 -119 156

11 2+5 24 69 108 -128 155

12 1+2+3 3 86 85 -141 137

13 1+3+4 14 66 104 -104 136

14 1+3+5 25 67 109 -119 144

15 2+3+4 14 73 100 -118 145

16 2+3+5 25 70 106 -126 148

17 1+2+3+4 15 77 91 -122 132

18 1+2+3+5 26 71 104 -126 145

19 F0 1 40 137 -96 177

Final decision of endpoints in the interval is identified as the start

and end time of the first and last speech segments, respectively.

4. EXPERIMENTAL RESULTS
The experimental database used in this study is the Aurora2 test sets

[6]. Endpoint references are obtained by aligning clean test data to

a set of HMM models trained on clean data in both training and test

sets. In this study, VAD performance is evaluated via the time errors

of estimated endpoints to references. Positive value denotes behind

while negative value means before. Parameters in frame partitioning

are set as follows. Segment length is limited to 3-25 frames in each

half second interval. The penalty weight λp is set to 0.2;

In the experiment, we first want to investigate the speech-noise

discrimination of different types of parameters. The parameters ex-

amined here are Mel-Frequency Cepstral Coefficients (MFCC’s), log

Mel-scale Filter BANK energies (FBANK’s), LOGE, local Root

Mean Squared measurement (RMS), CCP, and their combinations.

MFCC’s and FBANK’s only contain static features. RMS is also

produced by ESPS pitch tracker and is approximately a linear time-

domain energy. LOGE and CCP have already been described in Sec-

tion 3. The reason why we look upon linear and log energies as dif-

ferent parameters is that they give different contribution to start and

end points as we noticed. All parameters mentioned here are vari-

ance normalized. Table 1 shows the comparison results on test set

A at SNR’s 0-20 dB. Pitch based results are also given in the table

(the last line): the start point denotes the start time of the first frame

where pitch is detected and end point denotes the end time of the

last voiced frame. Utterances where no pitch detected have not been

considered for the last line.

Start points in Table 1 consistently have positive mean errors

compared with model-based references, while end points have neg-

ative ones. Thus we need compensate the errors by negative and

positive constants, respectively. In fact, we want to pay more atten-

tion to the variance of the estimate errors since it determines how

efficient the compensation could be. From the comparison results,
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Fig. 2. Scatter diagram of standard deviations of endpoint es-

timate errors: test set A, averaged over 0-20 dB. (’◦’:LOGE,

’�’:RMS, ’	’:CCP, ’�’:MFCC’s, ’�’:FBANK’s, ’�’:LOGE+CCP,

’×’:LOGE+MFCC’s, ’�’:LOGE+FBANK’s, ’+’:RMS+CCP, ’
’:

RMS+MFCC, ’∗’:RMS+FBANK, ’�’: LOGE+RMS+CCP, ’�’:

LOGE+CCP+MFCC’s, ’⊗’:LOGE+CCP+FBANK’s, ’•’: RMS+

CCP+MFCC’s, ’⊕’: RMS+CCP+FBANK’s, ’�’: LOGE+RMS+

CCP+MFCC’s, ’�’: LOGE+RMS+CCP+FBANK’s)

we can conclude that (“>” means “better than” here):

• Variances of estimate errors of end points are always larger

than that of start points.

• For start points the individual parameters are ranked as RMS

> LOGE>FBANK’s>MFCC’s>CCP.

• For end points they are LOGE>FBANK’s>MFCC’s>CCP>
RMS.

• When combined with other parameters, MFCC’s show good

performance than FBANK’s.

• Though CCP alone is not good, it can help others in most

cases.

Fig. 2 shows the scatter diagram of the standard deviations of es-

timate errors for both start points and end points. From the figure, we

can see that parameter group 17, i.e. LOGE+RMS+CCP+MFCC’s

is a better choice. We select it as the feature vector for the following

experiments.

Besides investigating the ability to obtain consistent endpoint

estimate errors of different parameters, we also want to examine the

robustness of the proposed approach. Fig. 3 gives an example on file

FAK 3Z82A in subway noise at different SNR’s. In each sub-figure,

vertical bars on the horizontal line below the waveform denote the

segment boundaries in frame partitioning. Below it is the segment

clustering result. Higher-level parts denote speech and lower-level

parts indicate background noise. The endpoints are marked as longer

vertical bars on the waveform and labeled by ”start point” and ”end

point”. When SNR’s are high, the algorithm can accurately detect

voice activity. Even at low SNR’s, the algorithm can also obtain

reasonable speech-noise classification and endpoint positions.

Fig. 4 plots the standard deviation (std) of endpoint estimate er-

rors of each test set in different noise at different SNR’s. The curves

are flat and almost less than 0.1 second in the SNR range of clean to

10 dB. Even in 0 dB noise, the standard deviations can be controlled

within 0.3 second.
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Fig. 3. Endpointing example: test set A, subway noise, file

FAK 3Z82A.

5. CONCLUSION AND FUTURE WORK
In this paper, we proposed a robust endpoint detection algorithm

based on auto segmentation. It was implemented in two steps: ho-

mogeneous frame partitioning and segment clustering. The first step

partitioned all frames in the time interval into several segments. This

process is capable of limiting speech-noise transfer times and re-

laxing algorithm’s dependence on the percentage of noise in the

interval. Due to its auto segmentation nature, this step does not

need a noise model, and is applicable to different noise types and

SNR’s. The second step clustered the produced segment centroids

into speech and noise. Since DP based procedure is used in both

steps, the algorithm provided a graceful performance in finding seg-

mentation boundaries and classification threshold. Multiple parame-

ters like energy, pitch and voicing information can be easily incorpo-

rated into the procedure. The proposed algorithm was evaluated on

the test sets in the Aurora2 database. Variance of endpoint estimate

errors was considered as a primary guideline to evaluate the system

performance. Experiments on both parameter comparing and robust-

ness testing were carried out. In the first experiment, speech-noise

discrimination of several parameters, like energy, pitch, voicing in-

formation, and their combinations were compared. In the second ex-

periment, the algorithm showed its robustness at low SNR operating

environments. The endpoint estimate errors are shown to have small

variances. In the future, we would like to take into account the time

intervals where either speech or noise exists. We would also like to

automatically compensate the consistent endpoint estimate errors in

the algorithm.
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