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ABSTRACT 

This paper proposes a feature for voice activity detection (VAD) 

obtained from a speech signal analysis that uses the exponential 

autoregressive (ExpAR) model. This model employs exponential 

terms that depend on the amplitude of observed signals in the 

AR coefficients part. Since these terms can model the 

nonlinearity of speech caused by the nonlinear fluctuation of 

vocal cord vibration, this model can provide a better fit for 

speech signals. A parameter in the exponential terms of the 

ExpAR model called ‘the scaling parameter,’ is directly 

associated with the degree of nonlinearity of analyzed signals. 

Therefore, the scaling parameter changes when observed signals 

include speech signals. Based on this property, this parameter is 

usable as a feature for VAD under noisy conditions. An 

experiment using noisy speech data confirmed the potential 

performance of the proposed feature by comparing receiver 

operating characteristics curves obtained from the proposed 

feature and conventional robust features. Another experiment 

was conducted by comparing recalls, precisions, and F-measures 

for speech interval detection achieved by our proposed VAD 

algorithm, that utilized only the proposed feature, and two 

widely used standardized algorithms. The result showed that the 

proposed method could achieve better performance than those of 

the standardized algorithms.  

1. INTRODUCTION 

Voice activity detection (VAD) in the presence of environmental 

noise is a crucial aspect of speech signal processing techniques 

such as automatic speech recognition [1], speech coding [2], and 

speech enhancement [3]. Since these techniques depend strongly 

on the VAD accuracy or assume ideal VAD, insufficient VAD 

accuracy seriously affects their practical performance. This fact 

has created a need for effective VAD in real environments [4]. 

In general, VAD consists of two parts: an ‘acoustic feature 

extraction’ part, and a ‘decision mechanism’ part. Although both 

parts influence the VAD performance, this paper focuses 

particularly on the inherent performance of the features. 

The short-term signal energy and zero-crossing rate have 

long been used as simple acoustic features for VAD [5]. 

Although these features are indeed effective under high signal-

to-noise ratio (SNR) conditions, they are degraded easily by 

environmental noise. Therefore, many robust features have been 

proposed. Some of these features employ the periodicity of 

speech signals. These are autocorrelation function based features 

[6][7], spectrum based features that utilize harmonicity [8], and 

pitch based features [9]. Other features are based on power in the 

band-limited region [10][11][12]. Spectral shapes such as mel-

frequency cepstral coefficients [7], delta line spectral 

frequencies (LSF) [11], and whole spectra [12] have been also 

used to extract speech signals from other sounds. However, these 

speech features sometimes become similar to those of other 

sound signals. Therefore, there is still a need for more robust and 

effective features that represent the characteristics of speech. 

Recently, we proposed a stochastic time series modeling 

approach for speech signal analysis, which uses the exponential 

autoregressive (ExpAR) model [13]. This model is a class of 

nonlinear AR model, and can provide a better fit for speech 

signals that inherently include nonlinear fluctuations [14]. The 

ExpAR model was originally proposed in [15] for modeling data 

generated by nonlinear dynamics, where the nonlinear force 

depending on the amplitude acts and the system is perturbed by 

noise. The scaling parameter of the ExpAR model is directly 

associated with the degree of nonlinearity of analyzed signals. 

This nonlinearity may relate to the inherent characteristics of the 

speech production system. Using the property, we achieved a 

significant VAD performance improvement in comparison with 

previous methods. 

This paper first provides a brief explanation of the speech 

signal analysis using the ExpAR model, and then describes the 

relationships between the ExpAR model parameters and the 

physical characteristics of speech production, and the potential 

availability of the scaling parameter for VAD in Section 2. In 

Section 3, evaluation experiments confirm the efficiency of the 

proposed parameter in the presence of real environmental noise 

at a low SNR. Section 4 concludes this study. 

2. EXPONENTIAL AUTOREGRESSIVE MODEL 

2.1. Model and parameter estimation 

Unlike conventional linear AR models, the ExpAR model 

employs exponential terms that depend on the amplitudes of 

observed signals in the AR coefficients part as seen below: 
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where xt is the observed discrete signal at time t (t = 1, .. , N), { i,

i,  } are constant parameters, t is assumed to be a white 

Gaussian sequence at time t, p is the model order (i = 1, .. , p),

and  is a scaling parameter used to control the effect of the 

exponential terms. The model order p, the coefficients { i, i},

and the scaling parameter  are estimated as follows [13]: 

1. Fix the AR order p = p0 as minimizing Akaike information 

criterion (AIC) by applying linear AR models in advance, 

and initial value of the scaling parameter  = 0 as below: 
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where  is a very small number. 
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2. With p and  fixed, the least squared values of the 

parameters { i, i} are estimated as the values that minimize 

the sum of the prediction errors S described below: 
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3. Numerical optimization is used to find the optimal 

parameter with the constraint of fixing the estimated 

parameters { i, i}. This optimization employs a sequential 

quadratic programming to maximize the log likelihood of the 

prediction using the ExpAR model as below: 
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where f  is the probability density function and 

pNS2ˆ .

4. Iterate steps 2 and 3 until the  parameter converges to an 

optimal value. 

2.2. Relationship with nonlinearity of speech signal 

In this section we mention the reason for the ExpAR model’s 

effectiveness with speech signals. 

In previous models, the speech production system was 

described as consisting of two subsystems: the vocal cord 

vibration system and the vocal tract resonance system. In many 

cases, a two-path model has been used, that is, a physical 

oscillation model such as a secondary differential equation and 

linear predictive coding (LPC) have been applied to the vocal 

cord oscillation system and the vocal tract system, respectively. 

Theoretically, the vibration of the vocal cords is generated by 

phenomena whereby the volume velocity of the airflow and the 

impedance at the glottis change in time, and this has a nonlinear 

effect on the vocal tract. Therefore, it is necessary to model 

speech signals by combining interaction between the nonlinear 

dynamic mechanisms for the vocal cords and vocal tract. Unlike 

the previous modeling approach, the ExpAR model can be used 

to describe both vocal cord and vocal tract characteristics.  

One example of typical nonlinear vibration is the following 

van der Pol equation used in electrical circuit theory: 

012 bxxxx  , (1) 

where for 12x  the system has a negative damping force and 

starts to oscillate and diverge. On the other hand, for 12x  the 

system has a positive damping force and it starts to damp out. 

This is known as limit cycle behavior, and such process is that of 

amplitude-dependent frequency. Furthermore, an equation of 

motion for free oscillation has been proposed for modeling vocal 

cords vibration [16]: 
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where Kt is the time-varying energy loss within a pitch cycle, 

and 0 is the resonance angle frequency at Kt = 0. The 

oscillation state is determined according to the size of Kt. Since 

Kt is the function associated with the square of the amplitude 

within one pitch, the vibration process is considered to be 

similar the process generated by equation (1). 

When considering practical nonlinear phenomena, we 

employ the following stochastic differential equation model  

xgxfx  , where  is a continuous Gaussian white noise 

sequence. As regards the nonlinear restoring force it can be seen 

that the frequency increases (decreases) as the amplitude 

increases (decreases). Equation (1) is also extended to the 

stochastic van der Pol process bxxxx 12
, which 

describes perturbed limit cycle behavior. 

The second order ExpAR model was easily applied to such 

nonlinear force systems [15]: 
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For the relationship between the oscillation and roots, if the 

coefficients satisfy the condition, which is such that the roots 0

and 0  of 02211

2
 lie outside the unit circle, 

then xt starts to oscillate and diverge for small xt-1. On the other 

hand, if the coefficients satisfy another condition such that the 

roots  and  of 021

2
 lie inside the unit circle, 

then xt starts to damp out when xt-1 becomes too large. Therefore, 

the ExpAR model can describe the characteristics of such 

amplitude-dependent nonlinear oscillations as (1) and (2). 

Furthermore, as for stationary condition, with according to 

Tweddie’s theory [17], the ExpAR process is stationary even if 

the roots 0  and 0  lie outside the unit circle. 

2.3. Efficiency of scaling parameter 

In the ExpAR model, scaling parameter  can adapt the degree 

of the data amplitude in terms of how it affects the nonlinearity 

of the model. To confirm this property of scaling parameter ,

we show an example when we apply the secondary order ExpAR 

model of equation (3) to speech signals. The speech data was 

spoken by a male speaker under silent conditions (Fig.1 (a)), and 

its sampling rate was 8 kHz. First, the speech signals were 

analyzed by 25 ms-length frames with a 15 ms overlap. Then, 

the ExpAR model was applied to each frame, and the 

parameter was obtained for each frame. Figure 1 (b) shows the 

estimated  parameter for the speech signals.  

Note that the nonlinear term coefficients 1,2 and  are 

available to counterbalance each other. Figure 1 (c) shows the 

coefficients 1,2. Because the estimated 1,2 values do not 

become 0, we can confirm that a nonlinear term certainly exists 

in the model. The estimated  becomes small only during the 

period in which human speech is produced. We consider the 

nonlinearity to be large in the region where the estimated 

becomes small. This result suggests that parameter  can be an 

effective feature for VAD. In this section, although we deal with 

Figure 1: (a) Speech waveform under silent conditions. (b) 

Log  parameter. (c) 1,2 parameters. 
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only secondary order models, higher orders may be necessary to 

improve the model’s goodness-of-fit. 

3. EXPERIMENT 

In this section, we evaluate the validity of the proposed feature 

for VAD under noisy conditions by comparing it with other 

conventional features. This section first explains the property of 

noisy speech data for evaluation experiments, then shows the 

behavior of the proposed feature under noisy conditions, and 

shows the results of two evaluation experiments: the 

discriminative power and the VAD performance evaluations. 

3.1. Noisy speech data for evaluation 

Speech data mixed with environmental noise were used in this 

evaluation. We used travel arrangement dialogue data spoken in 

Japanese (SDB-L in [18]). The data consists of 2,292 utterances 

spoken by 178 speakers. The utterance duration is between 1.4 

to 12.1 seconds. We down-sampled the sampling rate of the data 

from 48 to 8 kHz. Correct VAD data were generated based on 

the hand labeled transcription for SDB-L, which includes onset, 

offset, and pause information. Examples of speech data and their 

correct VAD data are shown in Fig. 2 (a) and (b), respectively. 

As noise data, we recorded real environmental sounds at an 

airport arrival gate in Tokyo and in the street in the Shinjuku 

area of Tokyo. The recording equipment consisted of omni-

directional microphones (Sony ECM-77B) and portable IC 

recorders (Marantz PMD670), and the data were sampled at 48 

kHz. The data were down-sampled to 8 kHz, and added to the 

above speech data at an SNR of 0 dB. Because environmental 

sounds are not stationary, we adjusted the SNR so that the power 

peaks of the speech and noise data within the period of an 

utterance were the same. Different noise intervals were added to 

different utterances. Figure 2 (c) shows an example speech data 

shown in Fig. 2 (a) mixed with the street sounds. 

3.2. Behavior of scaling parameter 

When we apply the ExpAR model to observed signals as 

described in Section 2.3, the  parameters have different values 

for different frames, and these values change based on the 

degree of nonlinearity of the analyzed signal characteristics. The 

nonlinearity of the speech signals may differ from that of silence 

or other environmental sounds, therefore this  parameter 

behavior suggests its availability as a feature for VAD. To 

confirm the potential availability of scaling parameter  as a 

robust speech feature for VAD, we investigated the behavior of 

the parameter for speech signals under noisy conditions. 

The estimated  parameter values for the speech data shown 

in Fig. 2 (c). Figure 2 (d) show the estimated  parameter values. 

In this case, we set the model order p = 12. The result shows that 

the  parameters of a frame that includes speech signals are 

certainly smaller than those of the other frames. Therefore, this 

result suggests that the  parameter is available as a speech 

feature for VAD under noisy conditions. 

3.3. Discriminative power evaluation and results 

To assess the discriminative power of the proposed feature, we 

compared receiver operating characteristics (ROC) curves [10] 

obtained from the proposed feature and conventional robust 

features. The ROC curves were generated from ‘false accept’ 

(ratios of the frames mis-detected as speech to the non-speech 

frames) and ‘false reject’ (ratios of the frames mis-rejected as 

non-speech to the speech frames) calculations with various 

thresholds. Superior features achieve both a lower false accept 

and a lower false reject. The conventional features compared 

with the proposed feature were spectral entropy [8], the 

maximum autocorrelation peak [6], and the maximum LPC 

residual autocorrelation peak [7][19]. In this evaluation, we only 

compared raw features that could be obtained from within one 

frame, and did not compare features obtained after post-

processing (e. g. smoothing) the raw features because the 

performance of such post-processed features depends strongly 

on the performance of the raw features. 

Figure 3 shows the ROC curves achieved under airport and 

street noise conditions, respectively. The proposed feature 

achieved better ROC curves than the other features. At such a 

low SNR, spectral entropy could not achieve good performance 

because the speech spectra had fatally deteriorated. The features 

based on the autocorrelation function were more robust than the 

spectral entropy because of their inherent robustness as regards 

noise. However, the results indicate that the proposed feature is 

more robust than these autocorrelation based features. This fact 

suggests that the proposed feature captures the nonlinearity as 

characteristics of speech signals well, and that the nonlinearity 

of speech is not easily deteriorated by environmental noise. 

Furthermore, these results confirmed the potential performance 

of the proposed feature. 

3.4. VAD performance evaluation and results 

In this section, we propose a preliminary VAD algorithm that 

utilizes only the proposed feature, and compare the performance 

obtained from the proposed algorithm with two widely used 

standardized VAD algorithms. A “VAD algorithm” means the 

combination of feature extraction, feature post-processing, and 

decision mechanisms. Our proposed VAD algorithm is as 

following: 

1. Estimate  parameters for each frame by applying the 

ExpAR to speech signals as above. 

Figure 2: (a) Speech waveform under silent conditions. (b) 

Correct VAD data for (a). (c) Speech waveform (a) mixed 

with street noise at an SNR of 0 dB. (d) Log  parameter for 

noisy speech (c). 
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2. Take moving averages of the  parameter across 6 frames for 

smoothing.  

3. Take the long-term mean of the smoothed parameters and 

their standard deviation across 400 frames regardless of the 

existence of target speech signals, and sets the threshold as 

the sum of the mean and half of the standard deviation. This 

threshold was selected experimentally. 

4. Determine a frame whose smoothed parameter obtained is 

below the threshold to include speech signals.  

We evaluated the performance of this algorithm by comparing it 

with two standardized VAD algorithms. One was ITU-T G.729 

Annex B VAD [11], which simultaneously utilizes differentials 

in LSF, full-band energy, low-band energy, and zero-crossing 

rate. The other is ETSI WI008 Advanced Front-end (AFE) VAD 

for frame dropping [12], which simultaneously utilizes the whole 

spectra to design Wiener filters, the spectral sub-region, and 

spectral variance. The test data sets were the same as those 

described in Section 3.1. 

To evaluate the performance of the VAD algorithms, we 

introduced three criterions: recall (ratios of the frames correctly 

detected as speech to the speech frames; i.e. 1.0 – false reject = 

‘speech hit rate’ in [10]), precision (ratios of the frames correctly 

detected as speech to the frames detected as speech; i.e. 1.0 – 

false accept), and F-measure (harmonic mean of precision and 

recall). Table 1 shows the results obtained from the proposed 

VAD algorithms, ITU-T G.729 Annex B VAD, and ETSI AFE 

VAD. Although only one feature is utilized, the proposed 

method achieved better performance in terms of F-measure than 

the other two standardized methods, which utilize over three 

features. This is a promising result suggesting that the feature 

integrated the other features to the proposed feature and more 

sophisticated decision mechanisms must offer more robust and 

effective VAD in the presence of noise in future. 

4. CONCLUSION 

We proposed a feature for VAD based on a scaling parameter 

obtained by applying the ExpAR model to speech signals. 

Because the purpose of this scaling parameter is to control the 

nonlinear oscillation associated with the physical characteristics 

of speech production, the value of the parameter changes when 

the observed signals include speech signals. An evaluation 

experiment confirmed the potential performance of the proposed 

feature under noisy conditions. A second evaluation experiment 

showed that our proposed VAD algorithm utilizing only the 

proposed feature could achieve better performance than two 

standardized VAD methods, and confirmed the validity of using 

the proposed feature for VAD. 
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Table 1: Recalls, precisions, F-measures obtained from the 

proposed VAD, ITU-T G.729 Annex B VAD [11], and ETSI 

Wi008 Advanced Front-end VAD [12].

Airport Street

Recall 0.772 0.775

Precision 0.738 0.744
F-measure 0.755 0.759

Recall 0.605 0.639

Precision 0.671 0.682
F-measure 0.636 0.660

Recall 0.536 0.624

Precision 0.736 0.772

F-measure 0.620 0.690
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Figure 3: ROC curves for speech features in the presence of 

airport (left) and street (right) noise. 
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