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ABSTRACT

In this paper, we develop a robust wideband adaptive beamforming
algorithm for microphone array based speech recognition. We de-
velop a quadratic constraint based approach to deal with the uncer-
tainty in the look direction. In order to address the ill-conditioning
associated with the constraint matrix, diagonal loading (DL) is em-
ployed. The advantage of adding DL to the constraint matrix is that
the constraint matrix is only determined by the geometry of the ar-
ray thereby allowing the DL level to be chosen offline. We also de-
velop an iterative algorithm (and corresponding adaptive algorithm)
to solve for the robust beamformer coefficients. The developed algo-
rithm is applied to the problem of beamforming using microphone
arrays for speech recognition and shown to be superior to existing
algorithms.

1. INTRODUCTION

We consider the use of microphone arrays for speech recognition. In
particular, we consider the development of robust wideband adaptive
beamforming algorithms for this purpose. An adaptive beamformer
is able to adjust its beam pattern based on the input statistics to place
deep nulls in the direction of interferences. Among the broadband
adaptive beamformer, the Frost beamformer is one of the most exten-
sively studied [1]. The Frost beamformer has a multichannel tapped-
delay-line structure (Fig. 1), and a set of linear constraints are intro-
duced to ensure a desired frequency response in the look direction.

However, the performance of the Frost beamformer can degrade
severely in practice when steering vector errors exist, which may be
due to look direction error, array sensor position error, and small
mismatches in the sensor response. In such cases, the desired signal
might be mistaken as an interference signal and be suppressed [2, 4].
Several robust beamforming algorithms have been proposed to ad-
dress this problem [4, 5, 6, 7]. In [5], the steering vector errors
are modelled by “time-delay errors” and compensated for by self-
adjusted interpolation filtering. In [6], a method is proposed to op-
timize the worst-case performance. The problem is formulated as
minimizing a quadratic function subject to infinitely many quadratic
constraints. It is reduced to a second-order cone programming prob-
lem which can be solved by interior point methods.

Er and Cantoni proposed a robust broadband beamforming algo-
rithm which restricts the error between the desired and actual beam
pattern of the array over the frequency band of interest and over a
small spatial region around the array’s look direction, allowing for
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Fig. 1. Broadband beamformer with K sensors and J taps.

uncertainty in the look direction [4]. The constraint thus obtained
can be a quadratic constraint or reduced to a set of linear constraints.
In [7], linear constraints are constructed for a set of sampling points
around the look direction, which are reduced to a small number of
linear constraints using matrix SVD. The algorithm is similar to [4] if
the number of sampling points is large enough, as summation can be
viewed as an integration. However, Er’s linear constraint algorithm
is an approximation because the quadratic constraint is not strictly
equal to the set of linear constraints. An additional norm constraint
is imposed to overcome this limitation and this complicates the opti-
mization problem.

In this paper, we also consider quadratic constraint based ap-
proach to deal with the uncertainty in the look direction. In order
to address the ill-conditioning associated with the constraint matrix,
a diagonal loading (DL) is added to the constraint matrix thereby
ensuring a robust solution to the quadratic constraint beamforming
problem. The advantage of adding DL to constraint matrix is that
the constraint matrix is only determined by the geometry of the array
thereby allowing the DL level to be chosen offline. This is superior
to adding DL to the signal covariance matrix where the DL level has
to be chosen online. It is shown that the diagonal loading is equiva-
lent to an additional norm constraint without introducing it explicitly.
We also develop an iterative algorithm (and corresponding adaptive
algorithm) to solve for the robust beamformer coefficients. The de-
veloped algorithm is applied to the problem of beamforming using
microphone arrays for speech recognition and shown to be superior
to existing algorithms.
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2. QUADRATIC CONSTRAINT ROBUST BEAMFORMER

A quadratic constraint broadband beamformer which is robust to
DOA error is proposed by Er [4]. Consider a pre-steered Frost beam-
former with K sensors and J taps (Fig.1). The weighted square error
between desired and actual beam pattern of Frost beamformer over
the interested frequency range and a small spatial region, chosen to
deal with look direction uncertainty, can be written as
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θ is the assumed look direction, ∆θ is a measure of uncertainty in
the assumed look direction, f(θ) is a spatial weighting function, ω is
the frequency variable and V (θ, ω) is the array steering vector. Φ is
the positive semi-definite constraint matrix which can be calculated
by either mathematical integration or by numerical techniques. w
is the pursued beamformer’s weight vector, and wd is the desired
beamformer’s weight vector. Generally, Delay and Sum beamformer
is used as the desired beamformer because of its robustness in the
look direction.

The robust beamforming problem can be mathematically formu-
lated as the following optimization problem

min
w

wHRXXw, subject to (w − wd)HΦ(w − wd) ≤ ε (3)

where RXX is the correlation matrix of the concatenated data vector
X as in [1], and ε is a parameter chosen to control the tightness
of the quadratic constraint. The weight vector w is a real vector,
and Φ is a positive definite complex matrix. The constraint function
(w − wd)HΦ(w − wd) will always be a real number. Let Φ =
Φr + jΦi, then the constraint function (w − wd)HΦ(w − wd) =
(w − wd)T Φr(w − wd). Hence we always replace Φ with its real
part Φr and assume no difference between Φ and Φr .

Let we = w − wd. Problem (3) can be written as

min
we

(wd+we)
T RXX(wd+we), subject to wT

e Φwe ≤ ε (4)

Two methods will be developed to solve this quadratic constraint
beamforming problem.

2.1. Lagrangian Multiplier Method

The Lagrange function is defined as

L(λ) = (wd + we)
T RXX(wd + we) + λ(wT

e Φwe − ε) (5)

Taking partial derivative with respect to we, the optimal solution
can be shown to be

we = −(RXX + λΦ)−1RXXwd (6)

λ is the Lagrange multiplier and can be obtained via Newton’s method.
The details are omitted here because of space limitations.

2.2. Iterative Algorithm

We develop an iterative algorithm using the approach discussed in
[8]. In [8], an iterative solution (also adaptive algorithm) was devel-
oped to solve the following constrained optimization problem:

min
w∈S
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�
, S = {w : ‖w‖ ≤ ε} (7)

The iterative algorithm is given by

wk+1 = P [(I − µR)wk + µb], (8)

where
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√

ε
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(9)

We now manipulate the robust beamforming problem (4) into a form
compatible with (8), enabling development of the iterative algorithm.
Using eigenvalue decomposition, the matrix Φ in equation (4) can be
written as,

Φ = UΛUT = (UΛ1/2)(UΛ1/2)T (10)

Let w̃e = (UΛ1/2)T we. After some manipulation, equation (4) can
be written as

min
w̃e

{1

2
w̃T

e R̃w̃e − w̃T
e b̃}, subject to w̃T

e w̃e ≤ ε (11)

where R̃ = Λ−1/2UT RXXUΛ−1/2, and b̃ = −Λ−1/2UT RXXwd.
Now the iterative algorithm (8) can be applied to solve this prob-
lem [8]. The corresponding adaptive algorithm is obtained by sub-
stituting the instantaneous estimates R̂k and b̂k into (8), where R̂k =

Λ−1/2UT XkXT
k UΛ−1/2 and b̂ = −Λ−1/2UT XkXT

k wd, respec-
tively.

3. DIAGONAL LOADED ROBUST BEAMFORMER

In [4], Er proposed a method wherein the original quadratic con-
straint is replaced by a set of linear constraints. Assume matrix Φ is a
low rank matrix which can be represented by its eigen-decomposition
Φ = U1Λ1U

T
1 . The original quadratic constraint in equation (4) can

be approximated by a set of linear constraints UT
1 we = 0. The lin-

ear constraint algorithm is an approximation because the quadratic
constraint wT

e Φwe ≤ ε is not equivalent to the linear constraints
UT

1 we = 0. Often matrix Φ is only approximated by U1Λ1U
T
1 but

is not exactly equal to it. In general, Φ = U1Λ1U
T
1 + U2Λ2U

T
2 .

Although the norm of Λ2 is small, if the norm of w is big enough,
wT

e U2Λ2U
T
2 we may exceed ε. In such cases, the original quadratic

constraint is not satisfied.
In [4], an extra norm constraint on w was proposed to ensure that

the quadratic constraint and the set of linear constraints are equiva-
lent. However, it complicates the optimization problem and was not
pursued in detail. The other disadvantage of the algorithm is that to
ensure better approximation to matrix Φ, the dimension of Λ1 has to
be increased, which increases the number of linear constraints. Con-
sequently, the degrees of freedom of the weight vector are reduced
compromising the ability to suppress interferences.

In view of the low rank property of the matrix Φ, a method which
can robustly solve equation (4) is now proposed. The idea is to add a
diagonal loading to Φ to restore it to a full rank matrix, i.e. construct
a new matrix Φ′ such that Φ′ = Φ + λI . The diagonal loading
method here is close to the diagonal loading method in [2] except
that the diagonal loading is added to the constraint matrix Φ instead
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of the signal covariance matrix RXX . Substituting Φ′ for Φ in (4),
the problem can be rewritten as

min
we

(wd + we)
T RXX(wd + we), s.t. wT

e Φ′we ≤ ε (12)

where Φ′ = Φ+λI . The above optimization problem can be solved
robustly by the Lagrangian method in section 2.1 or by the iterative
algorithm in section 2.2. Since Φ is totally determined by the array
geometry, it can be calculated beforehand as well as the DL level
λ. It can be chosen optimally offline with respect to Φ. In contrast,
in diagonal loading of the signal covariance matrix RXX , the DL
level has to be adjusted online with respect to different values of
RXX . Furthermore, the new well-conditioned constraint matrix Φ′

ensures a robust eigenvalue decomposition such that the iterative and
corresponding adaptive algorithm are stable, while for the method of
adding DL to signal covariance matrix no such adaptive algorithm is
available.

To get more insight into problem (12), we expand the constraint

wT
e Φ′we = wT

e Φwe + λwT
e we. (13)

Define wT
e Φwe = ε1 and λwT

e we = ε2, to ensure the quadratic
constraint is satisfied, it must be true ε1 + ε2 ≤ ε. In other words,
from the constraint wT

e Φ′we ≤ ε, two constraints wT
e Φwe ≤ ε and

λwT
e we ≤ ε can be met. Consequently, if constraint wT

e Φ′we ≤ ε
is satisfied, not only is the constraint in our original optimization
problem (4) satisfied, but also a new norm constraint on the weight
vector we is introduced. The norm constraint will introduce further
robustness as shown before [3]. And λ can be considered as a para-
meter which leverages constraint wT

e Φwe = ε1 and the norm con-
straint. In conclusion, the diagonal loading to the matrix Φ facilitates
robustness in the solution of the original optimization problem (4).

4. EXPERIMENTS

A speech recognition experiment is conducted on the Multichannel
Overlapping Numbers Corpus (MONC) to test the performances of
various beamforming algorithms. MONC is a multichannel speech
database recorded in a moderately reverberant 8.2m*3.6m*2.4m rec-
tangular room [9]. The recording scenario was designed to simulate
three speakers seated around a 1.2m diameter circular meeting room
table. The loudspeakers (L1, L2, L3) were placed at 90◦ spacings at
an elevation of 35cm. An eight-element, 20cm diameter, circular mi-
crophone array was placed in the centre of the table. An additional
microphone was placed at the centre of the array. The loudspeaker
and microphone placement is illustrated in Fig.2.The sampling rate
for recording is 8kHz.

In applying the beamforming algorithms to the data from the
MONC database, the desired source is speaker L1, which is assumed
to be a point source coming from the location: angle 180◦, radius
70cm, height 35cm. We define the origin of the coordinates to be
the center of the circular microphone array, and define angle 0◦ to
be the direction of the 8th microphone. The angle increases counter
clockwise, which means the 1st microphone is in the direction of
angle 45◦. Only microphones 1 to 8 are used in the beamforming.

Speech recognition results using different beamforming algo-
rithms are shown in Fig.3. Five beamforming algorithms and one
single microphone based approach are compared. CentreMic means
using single centre microphone’s signal for speech recognition, with-
out beamforming. DS, Frost, robFrost orig, robFrost Er and robFrost DL
represent conventional Delay-and-Sum beamforming, optimal Frost
beamforming [1], robust Frost beamforming with quadratic constraint

Fig. 2. MONC database experiment scenario

Fig. 3. Speech recognition rate

(using original constraint matrix, solved by Lagrangian method (6)),
Er’s robust Frost beamforming with a set of linear constraints [4]
and robust Frost beamforming with quadratic constraint (using di-
agonal loaded constraint matrix) respectively. For the robFrost DL
algorithm, both the Lagrangian multiplier method and the iterative
method yield identical experimental results, hence only the results
obtained by the Lagrangian method are shown in Fig.3. The tap
delay between each two taps of the Frost structure is the sampling
interval, i.e. 0.125ms. The constraint matrix of the robust Frost
beamforming is calculated through integration over the whole fre-
quency band 0–4000Hz and the uncertainty region: angle 180 ± 3◦,
height 35 ± 5cm, and radius 70 ± 3cm. s1, s1s2 and s1s2s3 rep-
resent three different scenarios separately: only speaker s1 is speak-
ing, both s1&s2 are speaking, and all three speakers are speaking.
For the proposed algorithm, the DL level λ is chosen to be 10−5

times largest eigenvalue of Φ. From the experiments results, it is ev-
ident that the proposed beamforming algorithm is significant better
than the other algrithms. We also plot the beam pattern of differ-
ent beamformers using one multichannel sample sentence from the
MONC database. Only speakers L1 and L2 are present in the sample
sentence. Fig.4 shows the beam pattern of various beamformers over
angle θ and frequency. It is apparent that the robust Frost beamform-
ing with diagonal loaded constraint matrix has the best combination
of robustness in the look direction (180◦) and good suppression in
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(a) Frost beamformer (b) robust Frost beamformer with original constraint matrix

(c) Er’s robust Frost beamformer with a set of linear constraints [4] (d) robust Frost beamformer with diagonal loaded constraint matrix

Fig. 4. Beam pattern of various beamformers over angle θ and frequency bins. The radius is fixed at 70cm and height fixed at 35cm. The look
direction is 180◦ and the interference direction is 90◦

the interference direction (90◦).
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